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Abstract

FoundationDB is an open source transactional key value store cre-
ated more than ten years ago. It is one of the first systems to combine
the flexibility and scalability of NoSQL architectures with the power
of ACID transactions (a.k.a. NewSQL). FoundationDB adopts an
unbundled architecture that decouples an in-memory transaction
management system, a distributed storage system, and a built-in
distributed configuration system. Each sub-system can be indepen-
dently provisioned and configured to achieve the desired scalabil-
ity, high-availability and fault tolerance properties. FoundationDB
uniquely integrates a deterministic simulation framework, used to
test every new feature of the system under a myriad of possible
faults. This rigorous testing makes FoundationDB extremely stable
and allows developers to introduce and release new features in a
rapid cadence. FoundationDB offers a minimal and carefully chosen
feature set, which has enabled a range of disparate systems (from
semi-relational databases, document and object stores, to graph
databases and more) to be built as layers on top. FoundationDB is
the underpinning of cloud infrastructure at Apple, Snowflake and
other companies, due to its consistency, robustness and availability
for storing user data, system metadata and configuration, and other
critical information.
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base transactions; - Computing methodologies — Distributed
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1 Introduction

Many cloud services rely on scalable, distributed storage backends
for persisting application state. Such storage systems must be fault
tolerant and highly available, and at the same time provide suffi-
ciently strong semantics and flexible data models to enable rapid
application development. Such services must scale to billions of
users, petabytes or exabytes of stored data, and millions of requests
per second.

More than a decade ago, NoSQL storage systems emerged offer-
ing ease of application development, making it simple to scale and
operate storage systems, offering fault-tolerance and supporting a
wide range of data models (instead of the traditional rigid relational
model). In order to scale, these systems sacrificed transactional
semantics, and instead provided eventual consistency, forcing ap-
plication developers to reason about interleavings of updates from
concurrent operations. FoundationDB avoids this trade-off by pro-
viding serializable transactions while scaling to handle the large
workloads these systems target at. In addition to helping applica-
tions correctly manage data stored as simple key-value pairs, this
also enables FoundationDB’s users to implement more advanced
features, such as consistent secondary indices and referential in-
tegrity checks [28]. Realizing their importance for building applica-
tions, many NoSQL systems retrofitted ACID transactions in recent
years. For example Apache Cassandra [45], MongoDB [10], Couch-
Base [1] and other NoSQL systems now all support some form of
ACID, accompanied by SQL dialects.

FoundationDB (FDB) [5] was created in 2009 and gets its name
from the focus on providing what we saw as the foundational set of
building blocks required to build higher-level distributed systems.
It is an ordered, transactional, key-value store natively supporting
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multi-key strictly serializable transactions across its entire key-
space. Unlike most databases, which bundle together a storage
engine, data model, and query language, forcing users to choose all
three or none, FDB takes a modular approach: it provides a highly
scalable, transactional storage engine with a minimal yet carefully
chosen set of features. It provides no structured semantics, no query
language, data model or schema management, secondary indices or
many other features one normally finds in a transactional database.
Offering these would benefit some applications but others that do
not require them (or do so in a slightly different form) would need to
work around. Instead, the NoSQL model leaves application develop-
ers with great flexibility. While FDB defaults to strictly serializable
transactions, it allows relaxing these semantics for applications
that don’t require them with flexible, fine-grained controls over
conflicts.

One of the reasons for its popularity and growing open source
community is FoundationDB’s focus on the “lower half” of a data-
base, leaving the rest to its “layers”—stateless applications devel-
oped on top to provide various data models and other capabilities.
With this, applications that would traditionally require completely
different types of storage systems, can instead all leverage FDB.
Indeed, the wide range of layers that have been built on FDB in
recent years are evidence to the usefulness of this unusual design.
For example, the FoundationDB Record Layer [28] adds back much
of what users expect from a relational database, and JanusGraph [9],
a graph database, provides an implementation as a FoundationDB
layer [8]. In its newest release, CouchDB [2] (arguably the first
NoSQL system) is being re-built as a layer on top of FoundationDB.

Testing and debugging distributed systems is at least as hard
as building them. Unexpected process and network failures, mes-
sage reorderings, and other sources of non-determinism can expose
subtle bugs and implicit assumptions that break in reality, which
are extremely difficult to reproduce or debug. The consequences of
such subtle bugs are especially severe for database systems, which
purport to offer perfect fidelity to an unambiguous contract. More-
over, the stateful nature of a database system means that any such
bug can result in subtle data corruption that may not be discovered
for months. Model checking techniques can verify the correctness
of distributed protocols, but often fall short of checking the ac-
tual implementation. Deep bugs [46], which only happen when
multiple crashes or restarts occur in a particular sequence, pose a
challenge even for end-to-end testing infrastructure. The develop-
ment of FDB took a radical approach—before building the database
itself, we built a deterministic database simulation framework that
can simulate a network of interacting processes and a variety of
disk, process, network, and request-level failures and recoveries, all
within a single physical process. This rigorous testing in simulation
makes FDB extremely stable, and allows its developers to introduce
new features and releases in a rapid cadence. This is unusual not
only for distributed databases, but even for centralized systems.

FDB adopts an unbundled architecture [50] that comprises a con-
trol plane and a data plane. The control plane manages the metadata
of the cluster and uses Active Disk Paxos [27] for high availability.
The data plane consists of a transaction management system, re-
sponsible for processing updates, and a distributed storage layer
serving reads; both can be independently scaled out. FDB achieves

strict serializability through a combination of optimistic concur-
rency control (OCC) [44] and multi-version concurrency control
(MVCC) [18]. Besides a lock-free architecture, one of the features
distinguishing FDB from other distributed databases is its approach
to handling failures. Unlike most similar systems, FDB does not
rely on quorums to mask failures, but rather tries to eagerly detect
and recover from them by reconfiguring the system. This allows us
to achieve the same level of fault tolerance with significantly fewer
resources: FDB can tolerate f failures with only f + 1 (rather than
2f + 1) replicas. This approach is best suited for deployments in
a local or metro area. For WAN deployments, FDB offers a novel
strategy that avoids cross-region write latencies while providing
automatic failover between regions without losing data.
The contributions of this paper are:

e An open source distributed storage system, FoundationDB,
combining NoSQL and ACID, used in production at Ap-
ple, Snowflake, VMWare and other companies, satisfying
their stringent scalability, availability, and durability require-
ments;

o A carefully chosen feature set that has been used to imple-
ment a range of widely disparate storage systems;

e Anintegrated deterministic simulation framework that makes
FoundationDB one of the most stable systems of its kind;
and

e A unique architecture and approach to transaction process-
ing, fault tolerance, and high availability.

The remainder of this paper is organized as follows. Section 2
details the design of FDB. Section 3 describes geo-replication and
failover. Section 4 discusses the deterministic simulation framework.
Section 5 evaluates the performance of FDB. Section 6 describes
our lessons learned from developing FDB. Section 7 summarizes
related work and Section 8 concludes the paper.

2 Design

A production database needs to solve many problems, including
data persistence, data partitioning, load balancing, membership and
failure detection, failure recovery, replica placement and synchro-
nization, overload control, scaling, concurrency and job schedul-
ing, system monitoring and alerting, backup, multi-language client
library, system upgrade and deployment, and configuration man-
agement. Discussing all these details is not possible, so this paper
focuses on the architectural design of FDB and its implications on
transaction management, replication, and fault tolerance.

2.1 Design Principles
The main design principles of FDB are:

o Divide-and-Conquer (or separation of concerns). FDB decou-
ples the transaction management system (write path) from
the distributed storage (read path) and scales them inde-
pendently. Within the transaction management system, pro-
cesses are assigned various roles representing different as-
pects of transaction management, including timestamp man-
agement, accepting commits, conflict detection, and logging.
Furthermore, cluster-wide orchestrating tasks, such as over-
load control, load balancing, and failure recovery are also
divided and serviced by additional heterogeneous roles.



o Make failure a common case. For distributed systems, failure
is a norm rather than an exception. In the transaction man-
agement system of FDB, we handle all failures through the
recovery path: instead of fixing all possible failure scenar-
ios, the transaction system proactively shuts down when it
detects a failure. As a result, all failure handling is reduced
to a single recovery operation, which becomes a common
and well-tested code path. Such error handling strategy is
desirable as long as the recovery is quick, and pays dividends
by simplifying the normal transaction processing.

o Fail fast and recover fast. To improve availability, FDB strives
to minimize Mean-Time-To-Recovery (MTTR), which in-
cludes the time to detect a failure, proactively shut down the
transaction management system, and recover. In our produc-
tion clusters, the total time is usually less than five seconds
(see Section 5.3).

o Simulation testing. FDB relies on a randomized, deterministic
simulation framework for testing the correctness of its dis-
tributed database. Because simulation tests are both efficient
and repeatable, they not only expose deep bugs [46], but also
boost developer productivity and the code quality of FDB.

2.2 System Interface

FDB exposes operations to read and modify single keys as well
as ranges of keys. The get() and set() operations read and write a
single key-value pair, respectively. For ranges, getRange() returns
a sorted list of keys and their values within the given range; and
clear() deletes all keys-value pairs whithin a range or starting with
a certain key prefix.

An FDB transaction observes and modifies a snapshot of the
database at a certain version and changes are applied to the under-
lying database only when the transaction commits. A transaction’s
writes (i.e., set() and clear() calls) are buffered by the FDB client until
the final commit() call, and read-your-write semantics are preserved
by combining results from database look-ups with uncommitted
writes of the transaction. Key and value sizes are limited to 10 KB
and 100 KB respectively for better performance. Transaction size is
limited to 10 MB, including the size of all written keys and values
as well as the size of all keys in read or write conflict ranges that
are explicitly specified.

2.3 Architecture

An FDB cluster has a control plane for managing critical system
metadata and cluster-wide orchestration, and a data plane for trans-
action processing and data storage, as illustrated in Figure 1.

2.3.1 Control Plane The control plane is responsible for persist-
ing critical system metadata, i.e., the configuration of transac-
tion systems, on Coordinators. These Coordinators form a disk
Paxos group [27] and select a singleton ClusterController. The
ClusterController monitors all servers in the cluster and re-
cruits three singleton processes, Sequencer, DataDistributor,
and Ratekeeper, which are re-recruited if they fail or crash. The
Sequencer assigns read and commit versions to transactions. The
DataDistributor is responsible for monitoring failures and balanc-
ing data among StorageServers. Ratekeeper provides overload
protection for the cluster.
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Figure 1: The architecture and the transaction processing of
FDB.
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2.3.2  Data Plane FDB targets OLTP workloads that are read-mostly,
read and write a small set of keys, have low contention, and re-
quire scalability. FDB chooses an unbundled architecture [50]: a dis-
tributed transaction management system (TS) performs in-memory
transaction processing, a log system (LS) stores Write-Ahead-Log
(WAL) for TS, and a separate distributed storage system (SS) is used
for storing data and servicing reads. The TS provides transaction
processing and consists of a Sequencer, Proxies, and Resolvers,
all of which are stateless processes. The LS contains a set of Log-
Servers and the SS has a number of StorageServers. This scales
well to Apple’s largest transactional workloads [28].

The Sequencer assigns a read version and a commit version to
each transaction and, for historical reasons, also recruits Proxies,
Resolvers, and LogServers. Proxies offer MVCC read versions
to clients and orchestrate transaction commits. Resolvers check
for conflicts between transactions. LogServers act as replicated,
sharded, distributed persistent queues, where each queue stores
WAL data for a StorageServer.

The SS consists of a number of StorageServers for serving
client reads, where each StorageServer stores a set of data shards,
i.e., contiguous key ranges. StorageServers are the majority of
processes in the system, and together they form a distributed B-tree.
Currently, the storage engine on each StorageServer is a modified
version of SQLite [41], with enhancements that make range clears
faster, defer deletion to a background task, and add support for
asynchronous programming.

2.3.3 Read-Write Separation and Scaling FDB’s design is decou-
pled; processes are assigned different roles (e.g., Coordinators,



StorageServers, Sequencer), and the database scales by expand-
ing the number of processes for each role. This separates the scaling
of client reads from client writes (i.e., transaction commits). Because
clients directly issue reads to sharded StorageServers, reads scale
linearly with the number of StorageServers. Similarly, writes are
scaled by adding more processes to Proxies, Resolvers, and Log-
Servers in TS and LS. For this reason, MVCC data is stored in the
SS, which is different from Deuteronomy [48, 51] that stores the
MVCC data in TS. The singletons (e.g., ClusterController and
Sequencer) and Coordinators on the control plane are not per-
formance bottlenecks, because they only perform limited metadata
operations.

2.3.4 Bootstrapping FDB has no external dependency on other
services. All user data and most of the system metadata (keys
that start with @xFF prefix) are stored in StorageServers. The
metadata about StorageServers is persisted in LogServers, and
the configuration of LS (i.e., information about LogServers) is
stored in all Coordinators. Using Coordinators as a disk Paxos
group, servers attempt to become the ClusterController if one
does not exist. The newly elected ClusterController recruits a
new Sequencer, which reads the configuration of old LS stored
in Coordinators and spawns a new TS and LS. From the old LS,
Proxies recover system metadata, including information about all
StorageServers. The Sequencer waits until the new TS finishes
recovery (see Section 2.4.4), and then writes the new LS configura-
tion to all Coordinators. At this time, the new transaction system
becomes ready to accept client transactions.

2.3.5 Reconfiguration Whenever there is a failure in the TS or
LS, or a database configuration change, a reconfiguration process
brings the transaction management system to a new configuration,
i.e., a clean state. Specifically, the Sequencer process monitors the
health of Proxies, Resolvers, and LogServers. If any one of the
monitored processes fails or the database configuration changes,
the Sequencer process terminates. The ClusterController will
detect the Sequencer failure event, then recruit a new Sequencer,
which follows the above bootstrapping process to spawn the new TS
and LS instance. In this way, transaction processing is divided into
epochs, where each epoch represents a generation of the transaction
management system with its unique Sequencer process.

2.4 Transaction Management

In the following, we first describe the end-to-end transaction pro-
cessing and strict serializability, then discuss transaction logging
and recovery.

24.1  End-to-end Transaction Processing Asillustrated in Figure 1, a
client transaction starts by contacting one of the Proxies to obtain
a read version (i.e., a timestamp). The Proxy then asks the Se-
quencer for a read version that is guaranteed to be no less than any
previously issued transaction commit version, and this read version
is sent back to the client. Then the client may issue multiple reads
to StorageServers and obtain values at that specific read version.
Client writes are buffered locally without contacting the cluster.
At commit time, the client sends the transaction data, including
the read and write sets (i.e., key ranges), to one of the Proxies
and waits for a commit or abort response from the Proxy. If the

transaction cannot commit, the client may choose to restart the
transaction from the beginning again.

A Proxy commits a client transaction in three steps. First, the
Proxy contacts the Sequencer to obtain a commit version that is
larger than any existing read versions or commit versions. The
Sequencer chooses the commit version by advancing it at a rate of
one million versions per second. Then, the Proxy sends the transac-
tion information to range-partitioned Resolvers, which implement
FDB’s optimistic concurrency control by checking for read-write
conflicts. If all Resolvers return with no conflict, the transaction
can proceed to the final commit stage. Otherwise, the Proxy marks
the transaction as aborted. Finally, committed transactions are sent
to a set of LogServers for persistence. A transaction is consid-
ered committed after all designated LogServers have replied to the
Proxy, which reports the committed version to the Sequencer (to
ensure that later transactions’ read versions are after this commit)
and then replies to the client. At the same time, StorageServers
continuously pull mutation logs from LogServers and apply com-
mitted updates to disks.

In addition to the above read-write transactions, FDB also sup-
ports read-only transactions and snapshot reads. A read-only trans-
action in FDB is both serializable (happens at the read version) and
performant (thanks to the MVCC), and the client can commit these
transactions locally without contacting the database. This is partic-
ularly important because the majority of transactions are read-only.
Snapshot reads in FDB selectively relax the isolation property of
a transaction by reducing conflicts, i.e., concurrent writes will not
conflict with snapshot reads.

2.4.2  Support Strict Serializability FDB implements Serializable
Snapshot Isolation (SSI) by combining OCC with MVCC. Recall
that a transaction Ty gets both its read version and commit version
from Sequencer, where the read version is guaranteed to be no less
than any committed version when Ty starts and the commit version
is larger than any existing read or commit versions. This commit
version defines a serial history for transactions and serves as Log
Sequence Number (LSN). Because Tx observes the results of all
previous committed transactions, FDB achieves strict serializability.
To ensure there is no gaps between LSNs, the Sequencer returns the
previous commit version (i.e., previous LSN) with commit version.
A Proxy sends both LSN and previous LSN to Resolvers and Log-
Servers so that they can serially process transactions in the order
of LSNs. Similarly, StorageServers pull log data from LogServers
in increasing LSNs as well.

Algorithm 1 illustrates the lock-free conflict detection algorithm
on Resolvers. Specifically, each Resolver maintains a history
lastCommit of recently modified key ranges by committed trans-
actions, and their corresponding commit versions. The commit
request for Ty comprises two sets: a set of modified key ranges R,,,
and a set of read key ranges Ry, where a single key is converted
to a single key range. The read set is checked against the modi-
fied key ranges of concurrent committed transactions (line 1—5),
which prevents phantom reads. If there are no read-write conflicts,
Resolvers admit the transaction for commit and update the list
of modified key ranges with the write set (line 6—7). For snapshot
reads, they are not included in the set R,. In practice, lastCommit
is represented as a version-augmented probabilistic SkipList [56].



Unlike write-snapshot isolation [68], which assigns the times-
tamp after checking Ry, FDB decides the commit version before the
conflict detection. This allows FDB to efficiently batch-process both
version assignments and conflict detection. Our micro-benchmark
shows that one single-threaded Resolver can easily handle 280K
TPS (each transaction reads a random key range and writes another
random key range).

Algorithm 1: Check conflicts for transaction Ty.

Require:/astCommit: a map of key range — last commit

version
1 for each range € R, do
2 ranges = lastCommit.intersect(range)
3 for each r € ranges do

4 L if lastCommit([r] > Tx.readVersion then
5

L return abort;

// commit path
¢ for each range € R,, do
7 L lastCommit[range]| = Tx.commitVersion;

8 return commit;

The entire key space is divided among Resolvers so that the
above read-write conflict detection algorithm may be performed in
parallel. A transaction can commit only when all Resolvers admit
the transaction. Otherwise, the transaction is aborted. It is possible
that an aborted transaction is admitted by a subset of Resolvers,
and they have already updated their history of lastCommit, which
may cause other transactions to conflict (i.e., a false positive). In
practice, this has not been an issue for our production workloads,
because transactions’ key ranges usually fall into one Resolver.
Additionally, because the modified keys expire after the MVCC
window, the false positives are limited to only happen within the
short MVCC window time (i.e., 5 seconds). Finally, the key ranges
of Resolvers are dynamically adjusted to balance their loads.

The OCC design of FDB avoids the complicated logic of acquiring
and releasing (logical) locks, which greatly simplifies interactions
between the TS and the SS. The price paid for this simplification
is to keep the recent commit history in Resolvers. Another draw-
back is not guaranteeing that transactions will commit, a challenge
for OCC. Because of the nature of our multi-tenant production
workload, the transaction conflict rate is very low (less than 1%)
and OCC works well. If a conflict happens, the client can simply
restart the transaction.

2.4.3 Logging Protocol After a Proxy decides to commit a transac-
tion, the log message is broadcast to all LogServers. As illustrated
in Figure 2, the Proxy first consults its in-memory shard map to
determine the StorageServers responsible for the modified key
range. Then the Proxy attaches StorageServer tags 1, 4, and 6 to
the mutation, where each tag has a preferred LogServer for storage.
In this example, tags 1 and 6 have the same preferred LogServer.
Note the mutation is only sent to the preferred LogServers (1
and 4) and an additional LogServer 3 to meet the replication re-
quirements. All other LogServers receive an empty message body.
The log message header includes both LSN and the previous LSN

Client
set'a'="b'
Shard Map Proxy
Common Header
Keys 'a' - 'f: SS 1,4,6 LSN: 7
Previous LSN: 5
Known Committed Version: 3
set'a'="b' set'a'="b' set'a'="b'

[ no data ] | tag: 1,46 | [no data ] tag: 1,4,6 tag: 1,4,6

|LogServer 0| |LogServer 1 | |LogServer 2| |LogServer 3| |LogServer 4|

Figure 2: Proxy writes a client mutation to LogServers after
sequencing and resolution. Later, the mutation will be asyn-
chronously replicated to StorageServers.

obtained from the Sequencer, as well as the known committed
version (KCV) of this Proxy. LogServers reply to the Proxy once
the log data is made durable, and the Proxy updates its KCV to the
LSN if all replica LogServers have replied and this LSN is larger
than the current KCV.

Shipping the redo log from the LS to the SS is not a part of
the commit path and is performed in the background. In FDB,
StorageServers aggressively fetch redo logs from LogServers
before they are durable on the LS, allowing very low latency for
serving multi-version reads. Figure 3 shows the time lag between
StorageServers and LogServers in one of our production clusters
for a 12-hour period, where the 99.9 percentile of the average and
maximum delay is 3.96 ms and 208.6 ms, respectively. Because this
lag is small, when client read requests reach StorageServers, the
requested version (i.e., the latest committed data) is usually already
available. If due to a small delay the data is not available to read
at a StorageServer replica, the client either waits for the data to
become available or issues a second request to another replica [32].
If both reads timed out, the client gets a retryable error to restart
the transaction.

Because the log data is already durable on LogServers, Storage-
Servers can buffer updates in memory and only persist batches
of data to disks with a longer delay, thus improving I/O efficiency
by coalescing the updates. Aggressively pulling redo logs from
LogServers means that semi-committed updates, i.e., operations
in transactions that are aborted during recovery (e.g., due to Log-
Server failure), need to be rolled back (see Section 2.4.4).

2.4.4  Transaction System Recovery Traditional database systems
often employ the ARIES recovery protocol [53], which depends on
a write-ahead log (WAL) and periodic, coarse-grained checkpoints.
During the recovery, the system processes redo log records from
the last checkpoint by re-applying them to the relevant data pages.
This will bring the database to a consistent state at the point of
failure and in-flight transactions during the crash can be rolled back
by executing the undo log records.

In FDB, the recovery is purposely made very cheap—there is
no checkpoint, and no need to re-apply redo or undo log during
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recovery. This is possible because of a great simplifying principle of
traditional databases: the redo log processing is the same as normal
log forward path. In FDB, StorageServers always pull logs from
LogServers and apply them in the background, which essentially
decouples redo log processing from the recovery. The recovery
process starts by detecting a failure, recruits a new transaction
system, and ends when old LogServers are no longer needed. The
new transaction system can even accept transactions before all the
data on old LogServers is processed, because the recovery only
needs to find out the end of redo log and re-applying the log is
performed asynchronously by StorageServers.

For each epoch, the Sequencer executes recovery in several steps.
First, the Sequencer reads the previous transaction system states
(i.e. configurations of the transaction system) from Coordinators
and locks the coordinated states to prevent another Sequencer pro-
cess from recovering at the same time. Then the Sequencer recov-
ers previous transaction system states, including the information
about all older LogServers, stops these LogServers from accept-
ing transactions, and recruits a new set of Proxies, Resolvers,
and LogServers. After previous LogServers are stopped and a
new transaction system is recruited, the Sequencer then writes
the coordinated states with current transaction system information.
Finally, the Sequencer accepts new transaction commits.

Because Proxies and Resolvers are stateless, their recoveries
have no extra work. In contrast, LogServers save the logs of com-
mitted transactions, and we need to ensure all previously committed
transactions are durable and retrievable by StorageServers. That
is, for any transactions that the Proxies may have sent back a
commit response, their logs are persisted in multiple LogServers
satisfying the configured replication degree.

The essence of the recovery of old LogServers is to determine
the end of redo log, i.e., a Recovery Version (RV). Rolling back undo
log is essentially discarding any data after RV in the old LogServers
and StorageServers. Figure 4 illustrates how RV is determined by
the Sequencer. Recall that a Proxy request to LogServers piggy-
backs its KCV, the maximum LSN that this Proxy has committed.
Each LogServer keeps the maximum KCV received and a Durable
Version (DV), which is the maximum persisted LSN. During a recov-
ery, the Sequencer attempts to stop all m old LogServers, where

Proxies A

Lm

(LSNa, KCVa) (LSNb, KCVb)

| |

| |

| |

| |
KCVm ————DVm

L2 KCV2 ————— DV2
| |
| |

L KCV1 ———1— DV
1 1
| 1 >

PEV RV
LogServers Version

Figure 4: An illustration of RV and PEV. On the left, a Proxy
sends redo logs to LogServers with a KCV and the LSN, and
LogServers keep the maximum KCV received. On the right,
recovery uses the maximum of KCV's and the minimum of
DV's on a set of LogServers as PEV and RV, respectively.

each response contains the DV and KCV on that LogServer. As-
sume the replication degree for LogServers is k. Once the Se-
quencer has received more than m — k replies !, the Sequencer
knows the previous epoch has committed transactions up to the
maximum of all KCVs, which becomes the previous epoch’s end
version (PEV). All data before this version has been fully replicated.
For current epoch, its start version is PEV + 1 and the Sequencer
chooses the minimum of all DVs to be the RV. Logs in the range
of [PEV + 1,RV] are copied from previous epoch’s LogServers
to the current ones, for healing the replication degree in case of
LogServer failures. The overhead of copying this range is very
small because it only contains a few seconds’ log data.

When Sequencer accepts new transactions, the first is a spe-
cial recovery transaction that informs StorageServers the RV so
that they can roll back any data larger than RV. The current FDB
storage engine consists of an unversioned SQLite [41] B-tree and
in-memory multi-versioned redo log data. Only mutations leaving
the MVCC window (i.e., committed data) are written to SQLite. The
rollback is simply discarding in-memory multi-versioned data in
StorageServers. Then StorageServers pull any data larger than
version PEV from new LogServers.

2.5 Replication

FDB uses a combination of various replication strategies for differ-
ent data to tolerate f failures:

e Metadata replication. System metadata of the control plane
is stored on Coordinators using Active Disk Paxos [27]. As
long as a quorum (i.e., majority) of Coordinators are live,
this metadata can be recovered.

e Log replication. When a Proxy writes logs to LogServers,
each sharded log record is synchronously replicated on k =
f+1LogServers. Only when all k have replied with success-
ful persistence can the Proxy send back the commit response
to the client. Failure of a LogServer results in a transaction
system recovery (see Section 2.4.4).

o Storage replication. Every shard, i.e., a key range, is asyn-
chronously replicated to k = f + 1 StorageServers, which

' This m — k can be reduced to m/k by organizing LogServers into Copysets [29],
i.e., one from each set, thus increasing fault tolerance.



is called a team. A StorageServer usually hosts a num-
ber of shards so that its data is evenly distributed across
many teams. A failure of a StorageServer triggers Data-
Distributor to move data from teams containing the failed
process to other healthy teams.

Note the storage team abstraction is more sophisticated than the
Copyset policy [29]. Copyset reduces the chance of data loss during
simultaneous process failures by assigning shards to a limited num-
ber of possible k-process groups. Otherwise, any k-process failure
can cause a higher probability of data loss. In our deployment, teams
need to consider multiple dimensions: each replica group needs to
satisfy several constraints at the same time. For instance, a cluster
can have a number of hosts and each host runs multiple processes.
In this case, a failure can happen at the host level, affecting many
processes. Thus, a replica group cannot place two processes on the
same host. More generally, the placement needs to ensure at most
one process in a replica group can be placed in a fault domain, e.g.,
racks or availability zones in a cloud environment.

To solve the above problem, we designed a hierarchical replica-
tion policy to reduce the chance of data loss during simultaneous
failures. Specifically, we construct the replica set at both host and
process levels and ensure that each process group belongs to a host
group that satisfies the fault domain requirement. This policy has
the benefits that data loss can only happen when all hosts in a se-
lected host group fail simultaneously; that is, when we experience
concurrent failures in multiple fault domains. Otherwise, each team
is guaranteed to have at least one process live and there is no data
loss if any one of the fault domains remains available.

2.6 Other Optimizations

Transaction batching. To amortize the cost of committing transac-
tions, the Proxy groups multiple transactions received from clients
into one batch, asks for a single commit version from the Sequencer,
and sends the batch to Resolvers for conflict detection. The Proxy
then writes committed transactions in the batch to LogServers.
The transaction batching reduces the number of calls to obtain a
commit version from the Sequencer, allowing Proxies to commit
tens of thousands of transactions per second without significantly
impacting the Sequencer’s performance. Additionally, the batch-
ing degree is adjusted dynamically, shrinking when the system is
lightly loaded to improve commit latency, and increasing when the
system is busy in order to sustain high commit throughput.
Atomic operations. FDB supports atomic operations such as
atomic add, bitwise “and” operation, compare-and-clear, and set-
versionstamp. These atomic operations enable a transaction to write
a data item without reading its value, saving a round-trip time to
the StorageServers. Atomic operations also eliminate read-write
conflicts with other atomic operations on the same data item (only
write-read conflicts can still happen). This makes atomic operations
ideal for operating on keys that are frequently modified, such as a
key-value pair used as a counter. The set-versionstamp operation
is another interesting optimization, which sets part of the key or
part of the value to be the transaction’s commit version. This en-
ables client applications to later read back the commit version and
has been used to improve the performance of client-side caching.

In the FDB Record Layer [28], many aggregate indexes are main-
tained using atomic mutations, allowing concurrent, conflict-free
updates, and the set-versionstamp operation is used to maintain
low-contention synchronization indices.

3 Geo-replication and failover
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Figure 5: A two-region replication setup for an FDB cluster.
Both regions have a data center and two satellite sites.

The main challenge of providing high availability during region
failures is the trade-off of performance and consistency [12]. Syn-
chronous cross-region replication provides strong consistency, but
pays the cost of high latency. Conversely, asynchronous replication
reduces latency by only persisting in the primary region, but may
lose data when performing a region failover. FDB can be configured
to perform either synchronous or asynchronous cross-region repli-
cation. However, there is a third possibility that leverages multiple
availability zones within the same region, and provides a high level
of failure independence, notwithstanding the unlikely event of a
complete region outage. Our design (1) always avoids cross-region
write latencies, as for asynchronous replication, (2) provides full
transaction durability, like synchronous replication, so long as there
is no simultaneous failure of multiple availability zones in a region,
(3) can do rapid and completely automatic failover between regions,
(4) can be manually failed-over with the same guarantees as asyn-
chronous replication (providing A, C, and I of ACID but potentially
exhibiting a Durability failure) in the unlikely case of a simultane-
ous total region failure, and (5) only requires full replicas of the
database in the primary and secondary regions’ main availability
zones, not multiple replicas per region. The rest of this section is
dedicated to this design.

Figure 5 illustrates the layout of a two-region replication of a
cluster. Both regions have a data center (DC) as well as one or
more satellite sites. Satellites are located in close proximity to the
DC (in the same region) but are failure independent. The resource
requirements from satellites are insignificant as they only need to
store log replicas (i.e., a suffix of the redo logs), while data centers
host LS, SS, and (when primary) the TS. Control plane replicas (i.e.,
coordinators) are deployed across three or more failure domains
(in some deployments utilizing an additional region), usually with
at least 9 replicas. Relying on majority quorums allows the con-
trol plane to tolerate one site (data center/satellite) failure and an
additional replica failure.

A typical deployment configuration is illustrated in Figure 5,
depicting two regions with a data center and two satellites in each
region. One of the data centers (DC1), configured with a higher
priority compared to DC2, is designated as the primary (its region



is denoted as the primary region, accordingly) and contains the
full TS, LS, and SS; DC2 in the secondary region has replicas of
data with its own LS and SS. Reads can be served from storage
replicas at both primary and secondary data centers (consistent
reads do require obtaining a read version from the primary data
center). All client writes are forwarded to the primary region and
processed by Proxies in DC1, then synchronously persisted onto
LogServers in DC1 and one or both satellite sites in the primary
region (depending on the configuration), avoiding the cross-region
WAN latency. The updates are then asynchronously replicated to
DC2, where they are stored on multiple LS servers and eventually
spread out to multiple StorageServers. LogRouters implement a
special type of FDB role that facilitates cross-region data transfer.
They were created to avoid redundant cross-region transfers of
the same information. Instead, LogRouters transfer each log entry
across WAN only once, and then deliver it to all relevant LS servers
locally in DC2.

The cluster automatically fails-over to the secondary region if the
primary data center becomes unavailable. Satellite failures could, in
some cases, also result in a fail-over, but this decision is currently
manual. When the fail-over happens, DC2 might not have a suffix of
the log, which it proceeds to recover from the remaining log server
in the primary region. Next, we discuss several alternative satellite
configurations which provide different levels of fault-tolerance.

Satellite configuration can be specified per region. Each satellite
is given a static priority, which is considered relatively to other
satellites in the same region. FDB is usually configured to store
multiple log replicas at each location. Three main alternatives are
supported: (1) synchronously storing updates on all log replicas at
the satellite with the highest priority in the region. In this case, if
the satellite fails, another satellite with the next priority is recruited
for the task, (2) synchronously storing updates on all replicas of two
satellites with the highest priorities in the region. In this case, if a
satellite fails, it can be similarly replaced with a different satellite of
lower priority, or, if none available, fall back to option (1) of using a
single satellite. In either case, the secondary region isn’t impacted,
as it can continue to pull updates from remaining LogServers in
the primary region. Finally, option (3) is similar to option (2) but
FDB only waits for one of the two satellites to make the mutations
durable before considering a commit successful. In all cases, if no
satellites are available, only the LogServers in DC1 are used. With
option 1 and 3, a single site (data center or satellite) failure can be
tolerated, in addition to one or more LogServer failures (since the
remaining locations have multiple log replicas). With option 2, two
site failures in addition to one or more LogServer failures can be
tolerated. In options 1 and 2, however, commit latency is sensitive
to the tail network latencies between the primary data center and
its satellites, which means that option 3 is usually faster. The choice
ultimately depends on the number of available satellite locations,
their connectivity to the data center and the desired level of fault
tolerance and availability.

When DC1 in the primary region suddenly becomes unavailable,
the cluster (with the help of Coordinators) detects the failure and
starts a new transaction management system in DC2. New Log-
Servers are recruited from satellites in the secondary region, in
accordance with the region’s replication policy. During recovery,
LogRouters in DC2 may need to fetch the last few seconds’ data

from primary satellites, which, due to the asynchronous replication,
may not have made it to DC2 prior to the failover. After the recovery,
if the failures in Region 1 are healed and its replication policy can
again be met, the cluster will automatically fail-back to have DC1
as the primary data center due to its higher priority. Alternatively,
a different secondary region can be recruited.

4 Simulation Testing
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Figure 6: The FDB deterministic simulator.

Testing and debugging distributed systems is a challenging and
inefficient process. This problem is particularly acute for FDB,
which offers a very strong concurrency control contract, any fail-
ure of which can produce almost arbitrary corruption in systems
layered on top. Accordingly, an ambitious approach to end-to-end
testing was adopted from the beginning of FDB ’s development: the
real database software is run, together with randomized synthetic
workloads and fault injection, in a deterministic discrete-event sim-
ulation. The harsh simulated environment quickly provokes bugs
(including but not limited to distributed systems bugs) in the data-
base, and determinism guarantees that every bug found this way
can be reproduced, diagnosed, and fixed.

Deterministic simulator. FDB was built from the ground up to
make this testing approach possible. All database code is determin-
istic; accordingly multithreaded concurrency is avoided (instead,
one database node is deployed per core). Figure 6 illustrates the
simulator process of FDB, where all sources of nondeterminism
and communication are abstracted, including network, disk, time,
and pseudo random number generator. FDB is written in Flow [4],
a novel syntactic extension to C++ adding async/await-like concur-
rency primitives. Flow provides the Actor programming model [13]
that abstracts various actions of the FDB server process into a
number of actors that are scheduled by the Flow runtime library.
The simulator process is able to spawn multiple FDB servers that
communicate with each other through a simulated network in a
single discrete-event simulation. The production implementation
is a simple shim to the relevant system calls.

The simulator runs multiple workloads (also written in Flow) that
communicate with simulated FDB servers through the simulated
network. These workloads include fault injection instructions, mock
applications, database configuration changes, and direct internal
database functionality invocations. Workloads are composable to
exercise various features and are reused to construct comprehensive
test cases.

Test oracles. FDB uses a variety of test oracles to detect failures
in simulation. Most of the synthetic workloads used in simulation



have assertions built in to verify the contracts and properties of the
database (for example, by checking invariants in their data that can
only be maintained through transaction atomicity and isolation).
Assertions are used throughout the code-base to check properties
that can be verified “locally”. Properties like recoverability (eventual
availability) can be checked by returning the modeled hardware
environment (after a set of failures perhaps sufficient to break
the database’s availability) to a state in which recovery should be
possible and verifying that the cluster eventually recovers.

Fault injection. The FDB simulator injects machine, rack, and
data-center level fail-stop failures and reboots, a variety of network
faults, partitions, and latency problems, disk behavior (e.g. the
corruption of unsynchronized writes when machines reboot), and
randomizes event times. This variety of fault injection both tests the
database’s resilience to specific faults and increases the diversity
of states in simulation. Fault injection distributions are carefully
tuned to avoid driving the system into a small state-space caused
by an excessive fault rate.

FDB itself cooperates with the simulation in making rare states
and events more common, through a high-level fault injection tech-
nique informally referred to as “buggification”. At many places in
its code-base, the simulation is given the opportunity to inject some
unusual (but not contract-breaking) behavior such as unnecessarily
returning an error from an operation that usually succeeds, inject-
ing a delay in an operation that is usually fast, choosing an unusual
value for a tuning parameter, etc. This complements fault injection
at the network and hardware level. Randomization of tuning pa-
rameters also ensures that specific performance tuning values do
not accidentally become necessary for correctness.

Swarm testing [40] is extensively used to maximize the diversity
of simulation runs. Each run uses a random cluster size and con-
figuration, random workloads, random fault injection parameters,
random tuning parameters, and enables and disables a different
random subset of buggification points. We have open-sourced the
swarm testing framework for FDB [7].

Conditional coverage macros are used to evaluate and tune the
effectiveness of the simulation. For example, a developer concerned
that a new piece of code may rarely be invoked with a full buffer
can add the line TEST( buffer.is_full() ); and analysis of
simulation results will tell them how many distinct simulation runs
achieved that condition. If the number is too low, or zero, they
can add buggification, workload, or fault injection functionality to
ensure that scenario is adequately tested.

Latency to bug discovery. Finding bugs quickly is important
both so that they are encountered in testing before production,
and for engineering productivity (since bugs found immediately
in an individual commit can be trivially traced to that commit).
Discrete-event simulation can run arbitrarily faster than real-time
if CPU utilization within the simulation is low, as the simulator can
fast-forward clock to the next event. Many distributed systems bugs
take time to play out, and running simulations with long stretches
of low utilization allows many more of these to be found per core
second than in “real-world” end-to-end tests.

Additionally, bugs can be found faster simply by running more
simulations in parallel. Randomized testing is embarrassingly par-
allel and FDB developers can and do “burst” the amount of testing
they do immediately before major releases, in the hopes of catching
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Figure 7: Measurement from a production cluster for a
month (hourly plots).

exceptionally rare bugs that have thus far eluded the testing process.
Since the search space is effectively infinite, simply running more
tests results in more code being covered and more potential bugs
being found, in contrast to scripted functional or system testing.

Limitations. Simulation is not able to reliably detect perfor-
mance issues, such as an imperfect load balancing algorithm. It is
also unable to test third-party libraries or dependencies, or even
first-party code not implemented in Flow. As a consequence, we
have largely avoided taking dependencies on external systems. Fi-
nally, bugs in critical dependent systems, such as a filesystem or the
operating system, or misunderstandings of their contract, can lead
to bugs in FDB. For example, several bugs have resulted from the
true operating system contract being weaker than it was believed
to be.

5 Evaluation

We first measure the performance of a production geo-replicated
FDB cluster. Then we study the scalability of FDB. Finally, we
provide some data on the time of reconfiguration.

5.1 Production Measurement

The measurement was taken from one of Apple’s production geo-
replicated cluster described in Section 3. This cluster consists of a
total of 58 machines: both the primary DC and remote DC have
25 machines, and two satellites in the primary region contain 4
machines each. This cluster is configured to use one satellite (6.5 ms
latency) for storing log data and utilize the other (65.2 ms latency)
running Coordinators. The network latency between primary DC
and remote DC is 60.6 ms. In total, there are 862 FDB processes
running on these machines, with additional 55 spare processes
reserved for emergency usage. The cluster stores 292 TB data with a
total of 464 SSD disks (8 per machine). An SSD disk is bound to either
one LogServer or two StorageServer processes to maximize I/O
utilization. We measured client read operations at StorageServers
and write (or commit) operations at Proxies.

Traffic pattern. Figure 7a shows the traffic of the cluster in a
month, which exhibits a clear diurnal pattern. The average numbers
of read operations, write operations, and keys read are 390.4K,
138.5K, and 1.467M, respectively. The number of keys read is several
times the number of reads because many of them are range reads
that return values for multiple keys.
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Figure 8: Scalability test.

Latency. Figure 7b shows the average and 99.9-percentile of
client read and commit latencies. For reads, the average and 99.9-
percentile are about 1 and 19 ms, respectively. For commits, the
average and 99.9-percentile are about 22 and 281 ms, respectively.
The commit latencies are higher than read latencies because com-
mits always write to multiple disks in both primary DC and one
satellite. Note the average commit latency is lower than the WAN
latency of 60.6 ms, due to asynchronous replication to the remote
region. The 99.9-percentile latencies are an order of magnitude
higher than the average, because they are affected by multiple fac-
tors such as the variability in request load, queue length, replica
performance, and transaction or key value sizes. Due to the multi-
tenancy nature of CloudKit [59], the average transaction conflict
rate is 0.73% during the month.

Recovery and availability. In August 2020, there was only
one transaction system recovery, which took 8.61 seconds. This
corresponds to five 9s availability.

5.2 Scalability Test

The experiments were conducted on a test cluster of 27 machines
in a single data center. Each machine has a 16-core 2.5 GHz Intel
Xeon CPU with hyper-threading enabled, 256 GB memory, 8 SSD
disks, connected via 10 Gigabit Ethernet. Each machine runs 14
StorageServers on 7 SSD disks and reserves the other one SSD
for LogServer. In the experiments, we use the same number of
Proxies and LogServers. The replication degrees for both Log-
Servers and StorageServers are set to three.

We use a synthetic workload to evaluate the performance of FDB.
Specifically, there are four types of transactions: 1) blind writes that
update a configured number of random keys; 2) range reads that
fetch a configured number of continuous keys starting at a random
key; 3) point reads that fetch 10 random keys; and 4) point writes
that fetch 5 random keys and update another 5 random keys. We
use blind writes and range reads to evaluate the write and read
performance, respectively. The point reads and point writes are
used together to evaluate the mixed read-write performance. For
instance, 90% reads and 10% writes (90/10 read-write) is constructed
with 80% point reads and 20% point writes transactions. Each key
is 16 bytes and the value size is uniformly distributed between 8
and 100 bytes (averaging 54 bytes). The database is pre-populated
with data using the same size distribution. In the experiments, we
make sure the dataset cannot be completely cached in the memory
of StorageServers.
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Figure 9: Throughput and average latency for different op-
eration rate on a 24-machine cluster configuration.

Figure 8 illustrates the scalability test of FDB from 4 to 24 ma-
chines using 2 to 22 Proxies or LogServers. Figure 8a shows that
the write throughput scales from 67 to 391 MBps (5.84X) for 100 op-
erations per transaction (T100), and from 73 to 467 MBps (6.40X) for
500 operations per transaction (T500). Note the raw write through-
put is three times higher, because each write is replicated three
times to LogServers and StorageServers. LogServers are CPU
saturated at the maximum write throughput. Read throughput in-
creases from 2,946 to 10,096 MBps (3.43X) for T100, and from 5055
to 21,830 MBps (4.32X) for T500, where StorageServers are satu-
rated. For both reads and writes, increasing the number operations
in a transaction boosts throughput. However, increasing operations
further (e.g. to 1000) doesn’t bring significant changes. Figure 8b
shows the operations per second for 90/10 read-write traffic, which
increases from 593k to 2,779k (4.69X). In this case, Resolvers and
Proxies are CPU saturated.

The above experiments study saturated performance. Figure 9
illustrates the client performance on a 24-machine cluster with
varying operation rate of 90/10 read-write load. This configuration
has 2 Resolvers, 22 LogServers, 22 Proxies, and 336 Storage-
Servers. Figure 9a shows that the throughput scales linearly with
more operations per second (Ops) for both reads and writes. For
latency, Figure 9b shows that when Ops is below 100k, the mean
latencies remain stable: about 0.35ms to read a key, 2ms to commit,
and 1ms to get a read version (GRV). Read is a single hop operation,
thus is faster than the two-hop GRV request. The commit request
involves multiple hops and persistence to three LogServers, thus
higher latency than reads and GRVs. When Ops exceeds 100k, all
these latencies increase because of more queuing time. At 2m Ops,
Resolvers and Proxies are saturated. Batching helps to sustain the
throughput, but commit latency spike to 368ms due to saturation.
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5.3 Reconfiguration Duration

We collected 289 reconfiguration (i.e., transaction system recovery)
traces from our production clusters that typically host hundreds of
TBs data. Because of the client-facing nature, short reconfiguration
time is critical for the high availability of these clusters. Figure 10
illustrates the cumulative distribution function (CDF) of the recon-
figuration times. The median and 90-percentile are 3.08 and 5.28
seconds, respectively. The reason for these short recovery times is
that they are not bounded by the data or transaction log size, and
are only related to the system metadata sizes. During the recovery,
read-write transactions were temporarily blocked and were retried
after timeout. However, client reads were not impacted, because
they are served by StorageServers. As a result, clients were often
unaware the cluster was unavailable for a few seconds. The causes
of these reconfigurations include automatic failure recovery from
software or hardware faults, software upgrades, database configu-
ration changes, and the manual mitigation of production issues by
the Site Reliability Engineering (SRE) team.

6 Lessons Learned

FDB has been under active development since 2009 and became an
open source project under Apache license in 2018 [5]. This section
discusses our experience and lessons of FDB.

6.1 Architecture Design

The divide-and-conquer design principle has proven to be an en-
abling force for flexible cloud deployment, making the database
extensible as well as performant. First, separating the transaction
system from the storage layer enables greater flexibility in placing
and scaling compute and storage resources independently. Further,
operators are free to place heterogeneous roles of FDB on different
server instance types, optimizing for performance and costs. Second,
the decoupling design makes it possible to extend the database func-
tionality, such as our ongoing work of supporting RocksDB [38]
as a drop-in replacement for the current SQLite engine. Finally,
many of the recent performance improvements are specializing
functionality as dedicated roles, e.g., separating DataDistributor
and Ratekeeper from Sequencer, adding storage cache, dividing
Proxies into get-read-version proxy and commit proxy. This de-
sign pattern successfully allows new features and capabilities to be
added frequently.

6.2 Simulation Testing

Simulation testing has enabled FDB to maintain a very high de-
velopment velocity with a small team by shortening the latency
between a bug being introduced and a bug being found, and by
allowing deterministic reproduction of issues. Adding additional
logging, for instance, generally does not affect the deterministic
ordering of events, so an exact reproduction is guaranteed. The
productivity of this debugging approach is so much higher than
normal production debugging, that in the rare circumstances when
a bug was first found “in the wild”, the debugging process was
almost always first to improve the capabilities or the fidelity of the
simulation until the issue could be reproduced there, and only then
to begin the normal debugging process.

Rigorous correctness testing via simulation makes FDB extremely
reliable. In the past several years, CloudKit [59] has deployed FDB

for more than 0.5M disk years without a single data corruption
event. Additionally, we constantly perform data consistency checks
by comparing replicas of data records and making sure they are
the same. To this date, no inconsistent data replicas have ever been
found in our production clusters.

What is hard to measure is the productivity improvements stem-
ming from increased confidence in the testability of the system. On
numerous occasions, the FDB team executed ambitious, ground-up
rewrites of major subsystems. Without simulation testing, many of
these projects would have been deemed too risky or too difficult,
and not even attempted.

The success of simulation has led us to continuously push the
boundary of what is amenable to simulation testing by eliminating
dependencies and reimplementing them ourselves in Flow. For
example, early versions of FDB depended on Apache Zookeeper
for coordination, which was deleted after real-world fault injection
found two independent bugs in Zookeeper (circa 2010) and was
replaced by a de novo Paxos implementation written in Flow. No
production bugs have ever been reported since.

6.3 Fast Recovery

Fast recovery is not only useful for improving availability, but
also greatly simplifies the software upgrades and configuration
changes and makes them faster. Traditional wisdom of upgrading a
distributed system is to perform rolling upgrades so that rollback
is possible when something goes wrong. The duration of rolling
upgrades can last from hours to days. In contrast, FoundationDB
upgrades can be performed by restarting all processes at the same
time, which usually finishes within a few seconds. Because this
upgrade path has been extensively tested in simulation, all up-
grades in Apple’s production clusters are performed in this way.
Additionally, this upgrade path simplifies protocol compatibility
between different versions—we only need to make sure on-disk
data is compatible. There is no need to ensure the compatibility of
RPC protocols between different software versions.

An interesting discovery is that fast recovery sometimes can
automatically heal latent bugs, which is similar to software rejuve-
nation [42]. For instance, after we separated the DataDistributor
role from the Sequencer, we were surprised to discover several
unknown bugs in the DataDistributor. This is because before the
change, DataDistributor is restarted with Sequencer, which ef-
fectively reinitializes and heals the states of the DataDistributor.
After the separation, we made DataDistributor a long running
process independent of transaction system recovery (including
Sequencer restart). As a result, the erroneous states of the Data-
Distributor are never healed and cause test failures.

6.4 5s MVCC Window

FDB chooses a 5-second MVCC window to limit the memory usage
of the transaction system and storage servers, because the multi-
version data is stored in the memory of Resolvers and Storage-
Servers, which in turn restricts transaction sizes. From our experi-
ence, this 5s window is long enough for the majority of OLTP use
cases. If a transaction exceeds the time limit, it is often the case that
the client application is doing something inefficient, e.g., issuing
reads one by one instead of parallel reads. As a result, exceeding
the time limit often exposes inefficiency in the application.



For some transactions that may span more than 5s, many can
be divided into smaller transactions. For instance, the continuous
backup process of FDB will scan through the key space and create
snapshots of key ranges. Because of the 5s limit, the scanning
process is divided into a number of smaller ranges so that each
range can be performed within 5s. In fact, this is a common pattern:
one transaction creates a number of jobs and each job can be further
divided or executed in a transaction. FDB has implemented such a
pattern in an abstraction called TaskBucket and the backup system
heavily depends on it.

7 Related Work

Key/value stores and NoSQL systems. BigTable [25], Dynamo [33],
PNUTS [30], MongoDB [10], CouchDB [2], Cassandra [45] do not
provide ACID transactions. RAMCloud [54] is an in-memory key
value system that only supports single-object transactions. Google’s
Percolator [55], Apache Tephra [11], and Omid [20, 58] layered
transactional APIs atop key value stores with snapshot isolation.
FDB supports strict serializable ACID transactions on a scalable
key-value store that has been used to support flexible schema and
richer queries [6, 28, 47]. Similar SQL-over-NoSQL architecture has
been adopted in Hyder [19], Tell [49], and AIM [21].

Concurrency Control. Many systems [26, 31, 35, 36, 48, 50, 51,
55, 62] use the time of acquiring all locks to establish the serial order
among transactions and to guarantee atomicity and isolation. For
instance, Spanner [31] uses True-time for determining the commit
timestamps when all locks are acquired. CockroachDB [62] uses the
hybrid-logical clock that is a combination of physical and logical
time. Like FDB, a number of other systems [16, 19, 22, 34, 37, 58,
64] order transactions without locks. H-Store [61], Calvin [64],
Hekaton [34], and Omid [58] execute transactions in timestamp
order. Hyder [19], Tango [16], and ACID-RAIN [37] use a shared
log to establish ordering. Sprint [22] orders transactions with total-
order multicast. FDB provides strict serializability by a lock-free
concurrency control combining MVCC and OCC. The serial order
is determined by a Sequencer.

Unbundled database systems. These databases separate trans-
action component (TC) from data component (DC) [11, 20, 23, 48—
51, 58, 66, 67, 71]. Deuteronomy [48] creates virtual resources that
can be logically locked in the transaction system, where a DC knows
nothing about transactions, their commit or abort. Solar [71] com-
bines the benefits of scalable storage on a cluster of nodes with a
single server for transaction processing. Amazon Aurora [66, 67]
simplifies database replication and recovery with shared storage.
These systems use lock-based concurrency control. Tell [49] uses
advanced hardware to achieve high performance and implements
snapshot isolation with a distributed MVCC protocol, while FDB
uses commodity hardware with serializable isolation. In FDB, TC
is further decomposed into a number of dedicated roles and the
transaction logging is decoupled from TC. As a result, FDB chooses
a lock-free concurrency management with a deterministic transac-
tion order.

Bundled database systems. Traditional database systems have
tight coupling of the transaction component and data component.
Silo [65] and Hekaton [34] have achieved high throughput using a
single server for transaction processing. Many distributed databases
partition data to scale out [24, 26, 31, 35, 36, 43, 61, 62, 64]. Among

these systems, FaRM [35, 36], and DrTM [26] exploit advanced
hardware to improve transaction performance. FDB adopts an un-
bundled design with commodity hardware in mind.

Recovery. Traditional database systems often choose to imple-
ment a recovery protocol based on ARIES [53]. VoltDB [52] uses
command logging so that recovery starts from a checkpoint and
replays the commands in the log. NVRAM devices have been used
to reduce recovery time in [15, 36]. Amazon Aurora [66] decouples
redo log processing from the database engine by leveraging smart
storage, and only undo log is processed by the database engine.
RAMCloud [54] recovers in parallel redo logs on multiple machines.
The recovery time for these systems is proportional to the log size.
In comparison, FDB completely decouples redo and undo log pro-
cessing from the recovery by a mindful separation of log servers
and storage servers.

Testing. Non-deterministic fault-injection has been widely used
in the testing of distributed systems. Various approaches have in-
cluded faults such as network partition [14], power failures [70], and
storage faults [39]. Jepsen [3] is a commercial effort that has tested
a large number of distributed databases. All of these approaches
lack deterministic reproducibility. Model checking has also been
widely-applied to distributed systems [46, 69]. While model check-
ing can be more exhaustive than simulation, it can only verify the
correctness of a model rather than of the actual implementation.
Finally there are numerous approaches to testing the correctness of
database subsystems in the absence of faults, including the query
engine [17, 57, 60] and concurrency control mechanism [63]. The
FDB deterministic simulation approach allows verification of data-
base invariants and other properties against the real database code,
together with deterministic reproducibility.

8 Conclusions

This paper presents FoundationDB, a key value store designed for
OLTP cloud services. The main idea is to decouple transaction
processing from logging and storage. Such an unbundled archi-
tecture enables the separation and horizontal scaling of both read
and write handling. The transaction system combines OCC and
MVCC to ensure strict serializability. The decoupling of logging and
the determinism in transaction orders greatly simplify recovery by
removing redo and undo log processing from the critical path, thus
allowing unusually quick recovery time and improving availability.
Finally, deterministic and randomized simulation has ensured the
correctness of the database implementation. Our evaluation and
experience with cloud workloads demonstrate FoundationDB can
meet challenging business requirements.

Acknowledgment

We thank Ori Herrnstadt, Yichi Chiang, Henry Gray, Maggie Ma,
and all past and current contributors to the FoundationDB project,
as well as our SRE team, John Brownlee, Joshua McManus, Leonidas
Tsampros, Shambugouda Annigeri, Tarun Chauhan, Veera Prasad
Battina, Amrita Singh, and Swetha Mundla at Apple. We thank
anonymous reviewers, Nicholas Schiefer, and Zhe Wu for their
helpful comments, and particularly our shepherd, Eliezer Levy.



References

(15]

[16]

[17]

[18

[19]

[20

[
=

[22]

[23]

[24]

[25

[26]

[27]

[28]

[29

[30]

Couchbase. https://www.couchbase.com/.

CouchDB. https://couchdb.apache.org/.

Distributed system safety research. https://jepsen.io/.

Flow. https://github.com/apple/foundationdb/tree/master/flow.

FoundationDB. https://github.com/apple/foundationdb.

FoundationDB Document Layer. https://github.com/FoundationDB/fdb-
document-layer.

FoundationDB Joshua. https://github.com/FoundationDB/fdb-joshua.
Foundationdb storage adapter for janusgraph. https://github.com/JanusGraph/
janusgraph-foundationdb.

Janusgraph. https://janusgraph.org/.

MongoDB. https://www.mongodb.com/.

Tephra: Transactions for Apache HBase. http://tephra.incubator.apache.org/.
D. Abadi. Consistency tradeoffs in modern distributed database system design:
Cap is only part of the story. Computer, 45(2):37-42, Feb. 2012.

G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT
Press, Cambridge, MA, USA, 1986.

A. Alquraan, H. Takruri, M. Alfatafta, and S. Al-Kiswany. An analysis of network-
partitioning failures in cloud systems. In Proceedings of the 13th USENIX Con-
ference on Operating Systems Design and Implementation, OSDI'18, pages 51-68,
Carlsbad, CA, USA, 2018. USENIX Association.

J. Arulraj, M. Perron, and A. Pavlo. Write-behind logging. Proceedings of the
VLDB Endowment, 10:337-348, November 2016.

M. Balakrishnan, D. Malkhi, T. Wobber, M. Wu, V. Prabhakaran, M. Wei, J. D.
Davis, S. Rao, T. Zou, and A. Zuck. Tango: Distributed data structures over a
shared log. In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, pages 325-340, Farminton, PA, 2013.

H. Bati, L. Giakoumakis, S. Herbert, and A. Surna. A genetic approach for random
testing of database systems. In Proceedings of the 33rd International Conference on
Very Large Data Bases, VLDB ’07, pages 1243-1251, Vienna, Austria, 2007. VLDB
Endowment.

P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery
in Database Systems. Addison-Wesley, 1987.

P. A. Bernstein, C. W. Reid, and S. Das. Hyder - a transactional record manager
for shared flash. In CIDR, 2011.

E. Bortnikov, E. Hillel, I. Keidar, I. Kelly, M. Morel, S. Paranjpye, F. Perez-Sorrosal,
and O. Shacham. Omid, reloaded: Scalable and highly-available transaction
processing. In 15th USENIX Conference on File and Storage Technologies (FAST 17),
pages 167-180, Santa Clara, CA, Feb. 2017. USENIX Association.

L. Braun, T. Etter, G. Gasparis, M. Kaufmann, D. Kossmann, D. Widmer, A. Avitzur,
A Tliopoulos, E. Levy, and N. Liang. Analytics in motion: High performance event-
processing and real-time analytics in the same database. In Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data, SIGMOD ’15,
page 251-264, New York, NY, USA, 2015. Association for Computing Machinery.
L. Camargos, F. Pedone, and M. Wieloch.  Sprint: A middleware for
high-performance transaction processing. In Proceedings of the 2nd ACM
SIGOPS/EuroSys European Conference on Computer Systems 2007, pages 385-398,
Lisbon, Portugal, 2007.

W. Cao, Z. Liu, P. Wang, S. Chen, C. Zhu, S. Zheng, Y. Wang, and G. Ma. Polarfs:
An ultra-low latency and failure resilient distributed file system for shared storage
cloud database. Proceedings of the VLDB Endowment, 11(12):1849-1862, Aug. 2018.
S. Chandrasekaran and R. Bamford. Shared cache - the future of parallel databases.
In Proceedings 19th International Conference on Data Engineering, pages 840-850,
2003.

F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chan-
dra, A. Fikes, and R. E. Gruber. Bigtable: A distributed storage system for struc-
tured data. In Proceedings of the 7th USENIX Symposium on Operating Systems
Design and Implementation (OSDI'06), 2006.

H. Chen, R. Chen, X. Wei, J. Shi, Y. Chen, Z. Wang, B. Zang, and H. Guan. Fast
in-memory transaction processing using rdma and htm. ACM Transactions on
Computer Systems, 35(1), July 2017.

G. Chockler and D. Malkhi. Active disk paxos with infinitely many processes.
In Proceedings of the Twenty-first Annual Symposium on Principles of Distributed
Computing, PODC’02, pages 78-87, New York, NY, USA, 2002. ACM.

C. Chrysafis, B. Collins, S. Dugas, J. Dunkelberger, M. Ehsan, S. Gray, A. Grieser,
O. Herrnstadt, K. Lev-Ari, T. Lin, M. McMahon, N. Schiefer, and A. Shraer. Foun-
dationDB Record Layer: A Multi-Tenant Structured Datastore. In Proceedings
of the 2019 International Conference on Management of Data, SIGMOD’19, pages
1787-1802, New York, NY, USA, 2019. ACM.

A. Cidon, S. Rumble, R. Stutsman, S. Katti, J. Ousterhout, and M. Rosenblum.
Copysets: Reducing the frequency of data loss in cloud storage. In Presented as
part of the 2013 USENIX Annual Technical Conference, pages 37-48, San Jose, CA,
2013. USENIX.

B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohannon, H.-A.
Jacobsen, N. Puz, D. Weaver, and R. Yerneni. PNUTS: Yahoo!’s hosted data serving
platform. Proceedings of the VLDB Endowment, 1(2):1277-1288, Aug. 2008.

(31]

(32]

(33]

(35]

[36

=
&

[47]

[48

[49

[50

[51]

(52]

[54]

J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. Furman, S. Ghemawat,
A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li,
A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito,
M. Szymaniak, C. Taylor, R. Wang, and D. Woodford. Spanner: Google’s globally-
distributed database. In 10th USENIX Symposium on Operating Systems Design and
Implementation, pages 261-264, Hollywood, CA, Oct. 2012. USENIX Association.
J. Dean and L. A. Barroso. The tail at scale. Communications of the ACM,
56(2):74-80, Feb. 2013.

G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo: amazon’s highly
available key-value store. ACM SIGOPS Operating Systems Review, 41(6):205-220,
2007.

C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson, P. Mittal, R. Stonecipher,
N. Verma, and M. Zwilling. Hekaton: Sql server’s memory-optimized oltp engine.
In Proceedings of the 2013 ACM SIGMOD International Conference on Management
of Data, SIGMOD 13, pages 1243-1254, New York, NY, USA, 2013.

A. Dragojevi¢, D. Narayanan, O. Hodson, and M. Castro. Farm: Fast remote
memory. In Proceedings of the 11th USENIX Symposium on Networked Systems
Design and Implementation, pages 401-414, Seattle, WA, USA, April 2014.

A. Dragojevi¢, D. Narayanan, E. B. Nightingale, M. Renzelmann, A. Shamis,
A. Badam, and M. Castro. No compromises: Distributed transactions with con-
sistency, availability, and performance. In Proceedings of the 25th Symposium on
Operating Systems Principles, SOSP ’15, pages 54-70, New York, NY, USA, 2015.
Association for Computing Machinery.

L Eyal, K. P. Birman, I. Keidar, and R. van Renesse. Ordering transactions with
prediction in distributed object stores. In LADIS, 2013.

Facebook. Rocksdb. https://rocksdb.org.

A. Ganesan, R. Alagappan, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.
Redundancy does not imply fault tolerance: Analysis of distributed storage reac-
tions to single errors and corruptions. In Proceedings of the 15th Usenix Conference
on File and Storage Technologies, FAST’17, pages 149-165, Santa clara, CA, USA,
2017. USENIX Association.

A. Groce, C. Zhang, E. Eide, Y. Chen, and J. Regehr. Swarm testing. In Proceedings
of the 2012 International Symposium on Software Testing and Analysis, ISSTA 2012,
pages 78-88, Minneapolis, MN, USA, 2012. ACM.

R. D. Hipp. SQLite. https://www.sqlite.org/index.html, 2020.

Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton. Software rejuvenation:
analysis, module and applications. In Twenty-Fifth International Symposium on
Fault-Tolerant Computing, pages 381-390, 1995.

J. W. Josten, C. Mohan, I. Narang, and J. Z. Teng. Db2’s use of the coupling facility
for data sharing. IBM Systems Journal, 36(2):327-351, 1997.

H. T. Kung and J. T. Robinson. On optimistic methods for concurrency control.
ACM Transactions on Database Systems, 6(2):213-226, June 1981.

A. Lakshman and P. Malik. Cassandra: structured storage system on a p2p
network. In Proceedings of the 28th ACM symposium on Principles of Distributed
Computing, page 5, Jan 2009.

T. Leesatapornwongsa, M. Hao, P. Joshi, J. F. Lukman, and H. S. Gunawi. Samc:
Semantic-aware model checking for fast discovery of deep bugs in cloud sys-
tems. In Proceedings of the 11th USENIX Conference on Operating Systems Design
and Implementation, OSDI'14, pages 399-414, Broomfield, CO, 2014. USENIX
Association.

K. Lev-Ari, Y. Tian, A. Shraer, C. Douglas, H. Fu, A. Andreev, K. Beranek, S. Dugas,
A. Grieser, and J. Hemmo. Quick: a queuing system in cloudkit. In Proceedings of
the 2021 International Conference on Management of Data, SIGMOD Conference
2021, Xian, Shanxi, China, June 03 — 05, 2021. ACM, 2021.

J. Levandoski, D. Lomet, , and K. K. Zhao. Deuteronomy: Transaction sup-
port for cloud data. In Conference on Innovative Data Systems Research (CIDR).
www.crdrdb.org, January 2011.

S. Loesing, M. Pilman, T. Etter, and D. Kossmann. On the design and scalability of
distributed shared-data databases. In SIGMOD Conference, pages 663-676. ACM,
2015.

D. Lomet, A. Fekete, G. Weikum, and M. J. Zwilling. Unbundling transaction
services in the cloud. In Fourth Biennial Conference on Innovative Data Systems
Research, Asilomar, CA, Jan. 2009.

D. Lomet and M. F. Mokbel. Locking key ranges with unbundled transaction
services. Proceedings of the VLDB Endowment, 2(1):265-276, August 2009.

N. Malviya, A. Weisberg, S. Madden, and M. Stonebraker. Rethinking main mem-
ory oltp recovery. In 2014 IEEE 30th International Conference on Data Engineering,
pages 604-615, Chicago, IL, USA, March 2014.

C. Mohan, D. Haderle, B. G. Lindsay, H. Pirahesh, and P. M. Schwarz. Aries:
A transaction recovery method supporting fine-granularity locking and partial
rollbacks using write-ahead logging. ACM Transactions on Database Systems,
17(1):94-162, 1992.

D. Ongaro, S. M. Rumble, R. Stutsman, J. Ousterhout, and M. Rosenblum. Fast
crash recovery in ramcloud. In Proceedings of the Twenty-Third ACM Symposium
on Operating Systems Principles, SOSP "11, page 29-41, New York, NY, USA, 2011.
Association for Computing Machinery.


https://www.couchbase.com/
https://couchdb.apache.org/
https://jepsen.io/
https://github.com/apple/foundationdb/tree/master/flow
https://github.com/apple/foundationdb
https://github.com/FoundationDB/fdb-document-layer
https://github.com/FoundationDB/fdb-document-layer
https://github.com/FoundationDB/fdb-joshua
https://github.com/JanusGraph/janusgraph-foundationdb
https://github.com/JanusGraph/janusgraph-foundationdb
https://janusgraph.org/
https://www.mongodb.com/
http://tephra.incubator.apache.org/
https://rocksdb.org
https://www.sqlite.org/index.html

[55] D. Peng and F. Dabek. Large-scale incremental processing using distributed

[56

[57

[58

[60

[61

[62

[63

]

]

]

]

transactions and notifications. In Proceedings of the 9th USENIX Symposium on
Operating Systems Design and Implementation, OSDI'10, pages 251-264, Vancou-
ver, BC, Canada, 2010.

W. Pugh. Skip lists: A probabilistic alternative to balanced trees. Communications
of the ACM, 33(6):668—676, 1990.

M. Rigger and Z. Su. Testing database engines via pivoted query synthesis. In
14th USENIX Symposium on Operating Systems Design and Implementation (OSDI
20), pages 667-682. USENIX Association, Nov. 2020.

O. Shacham, Y. Gottesman, A. Bergman, E. Bortnikov, E. Hillel, and I. Keidar.
Taking omid to the clouds: Fast, scalable transactions for real-time cloud analytics.
Proceedings of the VLDB Endowment, 11(12):1795-1808, Aug. 2018.

A. Shraer, A. Aybes, B. Davis, C. Chrysafis, D. Browning, E. Krugler, E. Stone,
H. Chandler, J. Farkas, J. Quinn, J. Ruben, M. Ford, M. McMahon, N. Williams,
N. Favre-Felix, N. Sharma, O. Herrnstadt, P. Seligman, R. Pisolkar, S. Dugas,
S. Gray, S. Lu, S. Harkema, V. Kravtsov, V. Hong, Y. Tian, and W. L. Yih. Cloudkit:
Structured storage for mobile applications. Proceedings of the VLDB Endowment,
11(5):540-552, Jan. 2018.

D. R. Slutz. Massive stochastic testing of SQL. In A. Gupta, O. Shmueli, and
J. Widom, editors, VLDB’98, Proceedings of 24rd International Conference on Very
Large Data Bases, August 24-27, 1998, New York City, New York, USA, pages 618-622.
Morgan Kaufmann, 1998.

M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem, and P. Hel-
land. The end of an architectural era: (it’s time for a complete rewrite). In
Proceedings of the 33rd International Conference on Very Large Data Bases, VLDB
’07, pages 1150-1160. VLDB Endowment, 2007.

R. Taft, I. Sharif, A. Matei, N. VanBenschoten, J. Lewis, T. Grieger, K. Niemi,
A. Woods, A. Birzin, R. Poss, P. Bardea, A. Ranade, B. Darnell, B. Gruneir, J. Jaf-
fray, L. Zhang, and P. Mattis. Cockroachdb: The resilient geo-distributed SQL
database. In Proceedings of the 2020 International Conference on Management of
Data, SIGMOD, pages 1493-1509, Portland, OR, USA, June 2020. ACM.

C. Tan, C. Zhao, S. My, and M. Walfish. Cobra: Making transactional key-value
stores verifiably serializable. In 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20), pages 63-80. USENIX Association, Nov.

[64

(65

(66

(67

(68

[69

[71

]

]

]

2020.

A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao, and D. Abadi. Calvin: Fast
distributed transactions for partitioned database systems. In Proceedings of the
ACM SIGMOD International Conference on Management of Data, pages 1-12, May
2012.

S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden. Speedy transactions
in multicore in-memory databases. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, pages 18-32, Farminton, PA, 2013.
A. Verbitski, X. Bao, A. Gupta, D. Saha, M. Brahmadesam, K. Gupta, R. Mittal,
S. Krishnamurthy, S. Maurice, and T. Kharatishvili. Amazon aurora: Design con-
siderations for high throughput cloud-native relational databases. In Proceedings
of the 2017 ACM International Conference on Management of Data, SIGMOD ’17,
pages 1041-1052, Chicago, IL, USA, May 2017.

A. Verbitski, A. Gupta, D. Saha, J. Corey, K. Gupta, M. Brahmadesam, R. Mittal,
S. Krishnamurthy, S. Maurice, T. Kharatishvilli, and X. Bao. Amazon aurora: On
avoiding distributed consensus for i/0s, commits, and membership changes. In
Proceedings of the 2018 International Conference on Management of Data, SIGMOD
18, pages 789-796, 2018.

M. Yabandeh and D. Gémez Ferro. A Critique of Snapshot Isolation. In Proceedings
of the 7th ACM European Conference on Computer Systems, EuroSys’12, pages
155-168, Bern, Switzerland, 2012.

J. Yang, T. Chen, M. Wu, Z. Xu, X. Liu, H. Lin, M. Yang, F. Long, L. Zhang, and
L. Zhou. MODIST: transparent model checking of unmodified distributed systems.
In Proceedings of the 6th USENLX Symposium on Networked Systems Design and
Implementation, NSDI'09, pages 213-228, Boston, Massachusetts, 2009. USENIX
Association.

M. Zheng, J. Tucek, D. Huang, F. Qin, M. Lillibridge, E. S. Yang, B. W. Zhao,
and S. Singh. Torturing databases for fun and profit. In Proceedings of the 11th
USENIX Conference on Operating Systems Design and Implementation, OSDI'14,
pages 449-464, Broomfield, CO, 2014. USENIX Association.

T. Zhu, Z. Zhao, F. Li, W. Qian, A. Zhou, D. Xie, R. Stutsman, H. Li, and H. Hu. Solar:
Towards a shared-everything database on distributed log-structured storage. In
USENIX Annual Technical Conference, pages 795-807. USENIX Association, 2018.



	Abstract
	1 Introduction
	2 Design
	2.1 Design Principles
	2.2 System Interface
	2.3 Architecture
	2.4 Transaction Management
	2.5 Replication
	2.6 Other Optimizations

	3 Geo-replication and failover
	4 Simulation Testing
	5 Evaluation
	5.1 Production Measurement
	5.2 Scalability Test
	5.3 Reconfiguration Duration

	6 Lessons Learned
	6.1 Architecture Design
	6.2 Simulation Testing
	6.3 Fast Recovery
	6.4 5s MVCC Window

	7 Related Work
	8 Conclusions
	References

