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ABSTRACT
We present QuiCK, a queuing system built for managing asynchro-
nous tasks in CloudKit, Apple’s storage backend service. QuiCK
stores queued messages along with user data in CloudKit, and sup-
ports CloudKit’s tenancy model including isolation, fair resource
allocation, observability, and tenantmigration. QuiCK is built on the
FoundationDB Record Layer, an open source transactional DBMS. It
employs massive two-level sharding, with tens of billions of queues
on the first level (separately storing the queued items for each user
of every CloudKit app), and hundreds of queues on a second level
(one per FoundationDB cluster used by CloudKit). Our evaluation
demonstrates that QuiCK scales linearly with additional consumer
resources, effectively avoids contention, provides fairness across
CloudKit tenants, and executes deferred tasks with low latency.

CCS CONCEPTS
• Information systems→Message queues; • Software and its
engineering→ Ultra-large-scale systems.
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1 INTRODUCTION
To process client requests, modern cloud services perform a vari-
ety of tasks and commonly communicate with multiple backend
systems. Some tasks must execute in-line with the request, to guar-
antee the expected semantics to clients. Other tasks must happen
reliably, but not necessarily before responding to the client. Care-
fully identifying which tasks must happen in-line and which can
be deferred reduces request latency, improves resource utilization,
and optimizes interactions with dependent services. When a down-
stream system is unreachable, slow, or returning transient errors,
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postponing the call rather than failing a client request can signifi-
cantly improve service availability.

In this paper, we address the management of deferred tasks in
the context of CloudKit [25], Apple’s strongly-consistent structured
storage service and app development framework. CloudKit serves
as the storage and sync engine for many of Apple’s popular apps
(e.g., iCloud Drive, Notes, Photos, iMessage, iWork, News, Backup
and GameCenter), many 3rd party apps, and hundreds of millions
of daily users. CloudKit relies on FoundationDB [9, 29], an ordered
key-value store that supports strictly-serializable ACID transac-
tions, and on the FoundationDB Record Layer [18, 19], a compan-
ion system that adds record-oriented APIs, transactional secondary
indexes, a query language and more. FoundationDB and its Record
Layer are the open-source bedrock of cloud infrastructure at Apple.
CloudKit utilizes hundreds of FoundationDB clusters. It represents
each user’s app data as a logical database, assigned to one of the
clusters, and frequently re-balances FoundationDB clusters by mov-
ing user data in response to changes in load, to balance capacity,
or to improve locality. Sharding by user and app grants CloudKit
considerable flexibility when rebalancing logical databases, as the
typical database is small and accessed infrequently [19]. When scal-
ing up CloudKit, new FoundationDB clusters are added to the fleet,
and logical databases are moved to utilize this capacity, balancing
their load and storage demand across clusters.

CloudKit must handle a high volume of client requests with low
latency. Some tasks can be deferred and don’t have to block the
client. The following are examples of tasks that are too expensive
to execute in-line, may be throttled by an external service, and/or
have transient effects on concurrent queries:

• Create or drop indexes (in all CloudKit shards and locations,
globally) when an app’s schema is updated
• Update indexes in external systems (e.g., full-text indexes in Solr)
when data is updated
• Schedule push-notifications to users when data is updated
• Coordinate asynchronous notifications to remote CloudKit shards
when data (e.g., a Keynote document) is shared with users as-
signed to those shards
• Compaction of Backup snapshots and various metadata
• Cascading updates and directory deletes in iCloud Drive

Queuing and Workflow Management Systems are the canoni-
cal solutions for managing deferred tasks. Such systems provide
reliability and high-availability with guaranteed (at-least-once) exe-
cution semantics through automated retries. However, using these
systems to persist the tasks of a service such as CloudKit comes
with significant caveats. First, there is no transactionality between
CloudKit and an external queuing service; it isn’t straightforward
to guarantee correlated execution of deferred tasks and updates
to data in CloudKit, should the queue, the task executor, or the
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database fails/aborts. Second, this introduces a separate highly-
available, persistent system that needs to be provisioned, operated,
and tuned. Such systems manage their data differently from Cloud-
Kit and usually cannot provide per-tenant information (e.g., the
number of queued items of a particular user and app), do not support
per-tenant actions, and cannot guarantee isolation or fair resource
allocation between the tasks of different CloudKit tenants. Naively
mapping CloudKit’s tenancy model to the queuing system, e.g.,
creating a topic per database, does not scale. Finally, CloudKit often
moves user data across its shards, and their tasks must follow. Hav-
ing part of a user’s information reside in a different system creates
both data management and security challenges. CloudKit would not
only need to track tens of billions of tenant logical databases, but
now also separately track the locations of their deferred tasks. For
example, if a user is moved across continents, but its tasks remain
behind, the tasks may become non-deterministic due to regional
differences in data management policy. Neither allowing the task
to operate on the remote database nor implementing a task migra-
tion system are attractive, as both need to audit the provenance
of both the task and the database it affects. Collecting sufficient
provenance information for every backend system the task accesses
is error-prone and difficult to debug, as the task telemetry is stored
in different system instances for every link in the migration chain.

To address these challenges, we’ve built QuiCK, a Queuing sys-
tem developed for CloudKit, that is fully integrated with CloudKit
itself. QuiCK stores deferred tasks with user data in CloudKit, pro-
viding transactionality with other data, and leveraging CloudKit’s
data model, dynamic sharding, observability, and tooling. Just like
CloudKit, QuiCK relies on FoundationDB and its Record Layer.

Even though transactional DBMS systems have been previously
used for queuing and workflow management, using an ACID data-
base for queuing is still commonly considered an anti-pattern in
the industry [5]. Specifically, concerns are raised with creating hot-
spots in the database by using the same tables for both high-rate
enqueue and dequeue operations, the added complexity and lock-
ing mechanisms needed to support concurrent consumers, and the
common lack of push notification support in databases (readily
available in most queuing systems). In this paper, we show how
QuiCK’s design overcomes these challenges. First, QuiCK avoids
hot-spots by employing sharding on two levels – first and foremost,
our partitioning is based on the CloudKit tenancy model, taking
sharding to an extreme with potentially tens of billions of queues
stored in the system (one for each user of each app). These queues
are further partitioned across many FoundationDB clusters. Second,
to avoid contention among consumers, QuiCK uses a fault-tolerant,
coarse-grained leasing mechanism, where consumers contend on
queues rather than individual queued items. We avoid contention
between enqueue and dequeue operations by a careful use of the
Record Layer’s transactional indexing. Finally, in QuiCK a shared
pool of consumers is responsible for hundreds of millions of queues.
Instead of notifying consumers when newwork is enqueued, QuiCK
provides an efficient way for them to find non-empty queues when
they’re available to accept new work. This allows work scheduling
to not only consider item arrival time but also to allocate computa-
tional resources fairly among CloudKit tenants. In summary, this
paper makes the following contributions:

• QuiCK, a transactional queuing system built for CloudKit;
• A scalable design that avoids hot-spots and contention;
• Full support for CloudKit multi-tenancy, including isolation, fair
resource allocation, observability and tenant migration;
• A detailed description of how QuiCK leverages FoundationDB
and the Record Layer, recent open source-systems with growing
communities. Our use-case demonstrates interesting and subtle
aspects of these systems that could benefit others.
This paper is organized as follows. Section 2 includes a discussion

of the design goals and requirements for managing CloudKit’s
asynchronous tasks. In Section 3 we review the reasons we’ve
chosen to embed a queuing system in Cloudkit, rather than use
an external system, and discuss the typical concerns with using a
databases to represent queues. Section 4 provides background on
FoundationDB, the Record Layer and CloudKit, as well as gives
insights into their features that enabled QuiCK’s design. Section 5
describes Queue Zones, a new construct implemented in CloudKit
to represent individual queues. We present a detailed description
of QuiCK’s design in Section 6. Section 7 discusses related work.
Section 8 includes evaluation. Finally, Section 9 concludes the paper.

2 DESIGN GOALS AND REQUIREMENTS
At-least-once. For all of our current use-cases, it is sufficient to
ensure at-least-once semantics, where each task is guaranteed to
execute but may, in some cases, execute more than once. Tasks that
affect only the database could execute exactly-once using Founda-
tionDB’s support for ACID transactions. In practice, many tasks
affect services outside the database. When a task is part of a larger
flow, stronger functionality is often better achieved at a higher level
in the stack, as suggested by the end-to-end argument [23].

High Availability. Our solution must provide the same fault-
tolerance and availability for asynchronous tasks as we do for
stored data. Many tasks, while not requiring low latency, are user-
impacting. For example, failing to build a FoundationDB Record
Layer index may cause client requests requiring the index to fail;
in this case, the impact is temporary since another task will be
queued and complete the build. Some types of tasks might not be re-
submitted by the application, and losing themmay have a prolonged
effect. For example, failing to update a Solr index means clients
querying that index may continue to see stale data. In another
example, when data is modified in CloudKit, an asynchronous push-
notification task may be created. Without this notification, other
clients may not learn about this change until much later, when
another change occurs or the client proactively polls the database.

Low overhead. The overhead of reliably storing a task and guar-
anteeing high-availability should be low enough to justify deferring
the task, rather than executing it in-line. In our chosen design, the
overhead of replication for tasks is negligible as it amounts to one
or two additional keys in an existing FoundationDB transaction.
Concurrent enqueues to the same queue cannot conflict since they
update different keys in the database.

Scalability. In a cloud service deployed globally and serving
hundreds of millions of users, sharding is essential for scalabil-
ity. In CloudKit, since client requests often spawn tasks that op-
erate on that user’s data, the sharding of the tasks and the data
should be complementary. Further, when CloudKit rebalances log-
ical databases, any deferred work must “follow” the data, so that



they can be reliably executed at the destination. Storing and moving
tasks together with data addresses this requirement.

Fairness. In a multi-tenant system different apps do not generate
database load or deferred tasks uniformly, particularly over time.
It is important to guarantee fairness across users and apps by al-
locating resources in a manner that precludes heavier users from
starving smaller workloads.

Operations and monitoring. In any production system, it is impor-
tant to be able to correctly provision the system, detect and handle
problems, and handle unexpected load. For example, a corrupt task
should not block the whole system, and permanent failures should
be identified and treated differently from transient ones. It is also
important to monitor and understand the workload of different
users and apps. Storing tasks in CloudKit enables re-using existing
tools, which were developed for other types of data in our system.

3 CHOOSING A SYSTEM FOR TASK
MANAGEMENT

In this section, we connect these requirements to QuiCK’s design,
specifically our decision to embed tasks with the logical databases
they affect. We contrast this design with one employing a canonical,
dedicated external system for deferred task management. In Sec-
tion 3.1 we address common, abstract concerns using ACID DBMS
systems for queuing.

Queuing andWorkflowManagement systems frequently support
at-least-once, and sometimes exactly-once semantics [4]. This is not
sufficient to provide transactionality between CloudKit and external
systems, as one system may commit while the other aborts or fails.

Consider the case where only CloudKit commits. While often
recoverable, elided tasks add complexity by requiring future ac-
cesses to recognize the inconsistent state and schedule redundant
tasks. Recovery code recognizing the effect of an elided task will
rarely share a path with a trigger that would typically produce it,
complicating maintenance. Some triggers like push notifications
on updates leave no footprint; these rely on subsequent triggers or
manual refresh for recovery.

Conversely, if the asynchronous task is registered before Cloud-
Kit commits, the system endures redundant execution and race con-
ditions. Returning to the push notification example, if the CloudKit
operation fails or aborts, then clients will receive spurious notifica-
tions. Since the notification is delivered in race with the database
update, it is also possible (though unlikely) that the client will
refresh before the update commits.

Achieving at-most-once semantics between the systems is also
not trivial. If both work items and data are in the same database, a
task can be executed and removed from the system transactionally.

Modern queuing and Workflow Management systems provide
fault-tolerance and guarantee high-availability. Consider the ef-
fect of cross-datacenter replication on deferred task overhead. In a
combined system, both a cloud service and the queuing/workflow
system must replicate to multiple geographical locations before
successfully completing client requests. Executing these replication
tasks sequentially adds tens of milliseconds to request processing
and hence isn’t acceptable. Executing them concurrently compli-
cates recovery and introduces the aforementioned race conditions.
High cross-datacenter latency expands the hazard window, raising
the probability of these faults affecting the request.

An external system also affects the availability of CloudKit itself.
If that system is down or unreachable, or if storing a task results
in an error, CloudKit may reject client requests. Executing asyn-
chronous tasks in-line may be prohibitively expensive, significantly
impact request latency, or increase the number of rejected client
requests.

Systems deployed at scale calculate costs not only- and perhaps
not even principally- by measuring processing overheads. Rather,
the amortized cost of operating the service includes the developer
and capital resources necessary to provision, monitor, and tune
each system in a request pipeline. The seam between the database
and task queuing system includes heuristics maximizing their com-
bined throughput, capacity planning for growth of both systems,
and health/observability metrics actively monitored by engineers.
Using one highly-available storage system for both data and tasks
lowers operating costs when the heterogeneous workload adds less
complexity than the separate, specialized systems.

Continuing the topic of operability, recall that CloudKit opera-
tors rebalance logical databases to manage capacity and load on
sharded FoundationDB clusters. Databases may also move to satisfy
administrative or data policy objectives, changing the context in
which the task runs. Regional differences in data-management poli-
cies may further complicate task execution and make their effect
harder to predict. Storing queued tasks with user data allows us to
move them together. Furthermore, with QuiCK, while CloudKit still
needs to manage hundreds of millions of user databases, it neither
separately tracks their asynchronous tasks, nor coordinates data
moves with another system.

Contrast co-location with workarounds for an external system.
CloudKit could wait for deferred tasks to drain. Client requests
adding new deferred tasks would be failed, the external system
would guarantee no tasks affecting the database are queued, and ex-
ecuting tasks (including retries) would also be drained. This would
make the system unavailable to clients (but available to the task ex-
ecutor), adding significant coordination complexity to the back-end.
Alternatively, queued tasks could be allowed to operate on logical
databases in other datacenters. This entails a security policy that
includes provenance for the logical database as it could be moved
more than once, retry logic for a “moving” database, and undefined
ordering with respect to tasks enqueued at the destination. To com-
plicate things further, a database could be moved back to a context
where a zombie task could address it. Since rebalancing logical
databases is core to CloudKit, avoiding this complexity strongly
motivated co-locating databases and tasks.

Finally, the tenant of a queuing system is usually a topic; it is the
unit of resource allocation, sharding, monitoring, and ordering. In
CloudKit, a tenant is a logical database, or a set of logical databases
owned by a user; modern queuing systems scale to thousands of
topics [6], not billions. By way of example, a topic in the external
system QuiCK replaced is the type of asynchronous task generated
by CloudKit. This mismatch between the tenancy models created
friction that limited development in practice. For example, sharing
resources fairly within any subset of CloudKit users requires an im-
precise and impractical sub-partitioning for every topic. Querying
outstanding work by user is inexpressible. In QuiCK, we inherit
CloudKit’s native tenancy model to group queued items by user
and app, permitting explicit treatment of users in our scheduling



and resource allocation policy. We retain monitoring of aggregate
metrics per topic, and differentiate work items of different topics
for each user.

3.1 Queues in a DBMS
Next, we discuss three commonly brought-up areas of concern for
representing queues in a database. The first concern is that the
queue typically becomes a hot-spot because the same database
table is used for both enqueuing and dequeuing tasks at a high rate.
Our design circumvents the issue by having a two-level queuing
system: on the bottom level there are tens of billions of independent
queues embedded within logical databases in CloudKit (represented
as zones, described in Section 5). Top-level queues, currently one per
FoundationDB cluster, index non-empty queue zones. These queues
can be trivially sharded further by logically partitioning the key-
space. This extreme sharding, together with a careful design of the
operations in our system, helps us avoid hot-spots and contention.

The second concern is usually around management of concur-
rent consumers. Specifically, to avoid contention between multiple
consumers attempting to execute the same task, queue implementa-
tions use or simulate locks on tasks. This creates lock management
overheads and significant delays (or starvation) when a lock-holder
fails. QuiCK assigns work to consumers at the granularity of a
queue zone, rather than individual items, and uses a fault-tolerant,
time-based leasing mechanism that automatically makes the queue
zone available to other consumers if the lease holder is slow or fails.
Leases on individual items further help prevent duplicate execution
and improve concurrency, but they are only taken after obtaining a
coarser queue-level lease.

Finally, dedicated queuing systems usually support push-based
mechanisms to notify consumers of available items in the queue,
while using a database often requires consumers to poll to find
new items. A push-based solution, however, only makes sense if
the rate of event production is relatively low [26]. In our case,
we have a relatively small pool of consumers responsible for an
extremely large number of queue zones, so a polling-based solution
is much more appropriate. Furthermore, QuiCK doesn’t react to
individual work-item enqueue events, and instead chooses which
queue zones to service using scheduling, fairness, and resource
allocation policies.

4 FOUNDATIONDB, THE RECORD LAYER
AND CLOUDKIT

This section gives a brief introduction to FoundationDB [9], the
Record Layer [19], and CloudKit [25], emphasizing the particular
features QuiCK relies on.

FoundationDB is an open-source, distributed, ordered key-value
store that provides ACIDmulti-key transactionswith strictly-serializable
isolation, implemented using multi-version concurrency control
(MVCC) for reads and optimistic concurrency for writes. Neither
reads nor writes are blocked by other readers or writers; instead,
conflicting transactions fail at commit time and are usually retried
by the client. A client issuing a transaction first obtains a read
version, chosen as the latest database commit version, by mak-
ing a getReadVersion (GRV) call and then performs reads at that
version, effectively observing an instantaneous snapshot of the

database. Transactions that contain writes can be committed only if
none of the values they read have been modified by another trans-
action since the transaction’s read version. Committed transactions
are written to disk on multiple servers in the FoundationDB cluster
and then acknowledged to the client.

FoundationDB allows clients to customize the default concur-
rency control behavior by trading-off isolation semantics to reduce
transaction conflicts. Snapshot reads do not cause an abort even
if the read key was overwritten by a later transaction. One can
also explicitly add or remove read or write conflict ranges. Read
versions can be cached and re-used within a 5 second time window
(the transaction time limit currently imposed by FoundationDB).
Using cached versions may cause read-only transactions to return
older data. Since read-write conflicts are checked at commit time,
read-write transactions would still see the latest writes but poten-
tially suffer from increased rate of aborts. Finally, FoundationDB
exposes a “causal-read-risky” knob, which speeds up operations by
avoiding certain validations during getReadVersion. The effect is
similar to that of caching a read version.

FoundationDB provides basic CRUD operations on keys within
a transaction. In addition, atomic read-modify-write operations
on single keys (e.g., addition, min/max, etc.) are supported. These
operations do not create read conflicts, such that a concurrent
change to that value would not cause the transaction to abort.

QuiCK leverages all these features: it uses multi-key transactions
across different parts of a cluster’s keyspace and relies for correct-
ness both on FoundationDB’s ACID guarantees and on its advanced
isolation APIs. QuiCK uses version caching and relaxed validation
for optimization. Finally, we use atomic operations to implement
efficient counters (exposed as a Record Layer count index) used to
log the number of elements in each queue.

FoundationDB provides a minimal and carefully chosen set of
features. Layers are built on top to provide various data models
and other capabilities. Currently, the FoundationDB Record Layer
is the most substantial layer built on top of FoundationDB. This
layer is an open-source record-oriented data-store with semantics
similar to a relational database. The Record Layer provides schema
management, a rich set of query and indexing facilities including
transactional index maintenance, and a variety of features that
leverage FoundationDB’s advanced capabilities. It inherits Foun-
dationDB’s strong ACID semantics, reliability, and performance
in a distributed setting. The Record Layer is designed to provide
multi-tenancy at an extremely large scale. It allows creating isolated
logical databases for different tenants in the system, and limiting
the resources consumed by each tenant and operation.

CloudKit is Apple’s cloud storage service and app development
framework. It provides structured strongly-consistent storage, queries,
subscriptions and push-notifications, cross-device sync, and cross-
user sharing capabilities. CloudKit powers many of Apple most
popular apps, as well as by many externally developed apps. Cloud-
Kit allows rapid app development and at the same time helps de-
velopers by evolve their app by supporting schema evolution and
enforcement. CloudKit provides apps with logical private and public
databases. Each user of an app is assigned its own private database
only accessible by the user. A single public database is shared and
accessible by all users of an app. In addition, explicit sharing rela-
tionships can be established to allow one user to view or modify
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Figure 1: Peek, Obtain Lease, Complete, and Enqueue operations.

the data of another user. CloudKit achieves excellent scalability
by assigning each logical database to a particular physical data-
store, such as a FoundationDB cluster. Currently, CloudKit stores
hundreds of billions of logical databases. Each logical database is di-
vided into zones that store individual records. Zones can be synced
across devices and shared among users; they are similar to direc-
tories (rather than database tables) in that they can store a mix of
records of various types.

QuiCK leverages CloudKit’s logical databases and zones, its
schema management, sharding, high-availability, user-migration
capabilities, and more. We have extended CloudKit to support
a logical database pinned to a particular FoundationDB cluster
(ClusterDB, mentioned in Section 6) and queue zones (described
in Section 5). QuiCK relies on Record Layer’s transactional index
maintenance, query capabilities, schema support and more. We’ve
extended CloudKit to support arbitrary transactions across multiple
keys in the same FoundationDB cluster.

5 CLOUDKIT QUEUE ZONES
This section describes the design and implementation of queue APIs
in CloudKit, using the FoundationDB Record Layer. Similarly to
other data in CloudKit, queued items are stored in CloudKit zones,
and can be created in any type of CloudKit logical database. This
allows queues to take advantage of CloudKit data sharding.

Designating a zone to act as a queue is done upon its creation.
CloudKit zones are different from database tables in that they can
contain a mixture of record types. In particular, any type of Cloud-
Kit record can be enqueued. Queue zones maintain the following
metadata about enqueued records: item priority, lease identifier,
vesting time, and error count. Priority is an integer value, and lower
value means higher priority. Vesting time is the wall clock-time
when the item will be visible to consumers, which allows imple-
menting delayed work-items that take effect in the future. Items in
the queue are ordered by increasing priority and then vesting time,
using a secondary index defined on the pair of fields.

Leases are used to avoid work duplication. When taking a lease
on a queued item, the consumer is assigned a random lease identifier,
used to restrict operations on the item to the lease holder, for the

duration of the lease. Lease duration is determined by the consumer
and should be chosen to allow sufficient time to process the item
(or to extend the lease); at the same time, it should be short enough
to allow other consumers to take over promptly in case a lease-
holder fails. We implement fault-tolerant leases by using vesting
time: when taking a lease, instead of removing the work item from
the queue (and risking losing it if the consumer fails), we increase
the work item’s vesting time by the lease duration. This makes
the item unavailable to other consumers, but only for the duration
of the lease. Queue zones support the following main operations,
illustrated in Figure 1:

• enqueue(queuedItem, vesting delay, optional item id). This opera-
tion adds a queued item to the zone. Vesting time is calculated
by the CloudKit application server as current server time + vest-
ing delay. This operation returns a randomly generated item id
(by default), corresponding to the queued item. Alternatively,
the item id can also be specified by the client (e.g. to enable
idempotent operations).
• peek(max_items, optional query predicate) returns up-tomax_items
queued items in (priority, vesting time) order, that match a pred-
icate and whose vesting time has passed (as evaluated by the
CloudKit application server). Optionally can return only the
record ids, rather than actual records.
• obtain lease(item id, lease duration) takes a lease on a queued item
with the given identifier for the requested duration, by updating
the vesting time to current time + lease duration. A random lease
identifier is generated by the server and returned. The queued
record is updated with the new lease identifier and vesting time.
• complete(item id, optional lease id). Used to delete an item after it
has been consumed. If lease id is provided, this operation is used
to indicate completion of the work item, and it succeeds only if
the id matches the one in the record. If lease id isn’t provided,
the operation is used to cancel a queued item.

In addition, the queue API supports dequeue, extend lease and
requeue operations. dequeue is a transactional combination of peek
and obtain lease, extend lease is used to extend a lease and succeeds
if a valid lease is held by the caller or if it has expired but no other
consumer has leased the item. Finally, the requeue API updates



a queued item’s vesting time and error count, and is useful for
implementing re-tries to handle processing errors, as well as to
release a lease.

If consuming a queued item has any side-effects in the database,
the consumer may benefit from committing these side-effects and
completing the item in the same transaction. This way, if another
consumer has taken ownership or completed/cancelled the item,
the side-effects will be aborted. If the operation fails, the response
will indicate whether the lease is no longer valid or the queued item
no longer exists.

Applications wishing to avoid duplicate work may choose to
perform a transaction to obtain a lease before processing an item.
If, on the other hand, the application partitions work between
consumers in a way that duplication is unlikely, it might choose
to use peek without obtaining a lease, or even to execute a single
transaction to peek, process and complete the item.

It is easy to see that, despite its name, queue zones do not provide
strict FIFO guarantees – vesting time is calculated based on an
enqueuing server’s local time, and leases might cause queued items
to be re-ordered. In practice, the resulting order is sufficiently close
to FIFO; strict FIFO guarantees are rarely required, and in some case
are implemented by the application (e.g., using application level
sequence numbers). In the future, if stronger FIFO guarantees are in-
fact required, we can leverage FoundationDB’s commit timestamps
to order queued items, rather than relying on local server clocks (a
similar mechanism is used to implement CloudKit sync [19]).

Push notifications. While several backend services currently use
CloudKit queue zones, it isn’t currently exposed directly to mobile
apps. In order for mobile clients to leverage this API, it needs to
be combined with CloudKit’s subscriptions and push-notifications,
to avoid polling. Note, however, that delayed queued items may
become available for dequeue just by the virtue of time passing
and without any external updates to the database that could trigger
notifications. A potential way to achieve this is to notify clients
when a queued item is enqueued and placed at the front of the
queue, rather than when it vests. Then, CloudKit’s client daemon
could set a timer and notify the relevant mobile app when it’s
time to consume an item from the cloud database. Note that this is
different from QuiCK’s use of queue zones. In QuiCK, a shared pool
of consumers is responsible for hundreds of thousands / millions of
queue zones, which, as mentioned in Section 3, makes a push-based
solution neither efficient nor desirable.

6 QUICK DESIGN
QuiCK stores the asynchronous work items of each CloudKit user
in their own separate queue zone (for each application separately).
Namely, the queued items for a logical CloudKit database DB are
stored in a queueQDB underDB’s key-space prefix in FoundationDB.
Storing the queued items in the same logical database as the data
benefits locality of access and leverages the high-availability Foun-
dationDB provides for all data. This also shards queued items into
hundreds of millions of small queues, achieving scalability and
helping to avoid hot-spots.

This approach, however, presents a challenge – how do con-
sumers find logical databases with non-empty queues? Intuitively,
this could potentially be achieved using a Record Layer index –

an index that would automatically and transactionally track all
non-empty queues in a FoundationDB cluster. Unfortunately, such
an index does not align with the Record Layer abstractions – all in-
dexes need to be contained within a logical database (more precisely,
within a record store) rather than across them. Instead, QuiCKmain-
tains an application-level index, represented as yet another queue,
which we call a top-level queue. This queue is stored in a special
type of logical database, ClusterDB, created in CloudKit for QuiCK,
which is always pinned to a particular FoundationDB cluster, and
exists in every FoudnationDB cluster in our system. The top-level
queue for a FoundationDB cluser 𝐶 is denoted QC and contains
pointers to queue zones in the same cluster. While currently a sin-
gle top-level queue per cluster is sufficient for our use-cases, more
queues can be created for scalability by sharding the key-space. An
illustration of the high-level design is presented in Figure 2.

Enqueue. When enqueueing a work item in cluster 𝐶 , QuiCK
transactionally adds it to QDB and enqueues to QC a pointer to
QDB if one does not already exist for this queue zone. Usually,
enqueue happens when processing a user’s request, which often
involves updating other data of the user in CloudKit. In that case,
enqueue is done within the same transaction, achieving atomic-
ity between data updates and deferred work. While this always
ensures that every non-empty queue zone can be found by con-
sumers through a pointer in QC, the opposite isn’t necessarily true
– dangling pointers that reference empty queue zones could exist
since QuiCK garbage-collects pointers lazily. Note that transac-
tionally updating or querying 𝑄𝐶 when enqueueing an item or
deleting pointers (described below), requires transactions that cross
the boundary of logical databases (still staying within one Founda-
tionDB cluster). To support this, we’ve added such transactions to
CloudKit (exploiting FoundationDB’s transactions across its entire
keyspace). The enqueue operation is illustrated in Figure 3; some
details of enqueue are covered below where they’re relevant.

High-level scheduling algorithm. A pool of consumers is assigned
multiple FoundationDB clusters, each with a top-level queue. Each
consumer consists of one Scanner thread, a pool of Manager threads,
and a pool of Worker threads. The Scanner performs round-robin
(in random order) over all top-level queues and executes the pseudo-
code shown in Algorithm 1. When processing a queue, the Scanner
performs the following actions: (a) issues a transaction to peek
vested (non-leased) pointers, and (b) selects some of the pointers
and adds them to the local job queue. A pool of Manager threads
consumes pointers from this queue, processing each pointer using
Algorithm 2. The Worker threads handle work items, following Al-
gorithm 3. Actions (a) and (b) (Algorithm 1, lines 4-11) are executed
repeatedly, whenever Managers or Workers have insufficient tasks
to process. In (b), the Scanner filters out pointers that are already
being processed by its Manager threads. The scanner moves on to
the next top-level queue if insufficient pointers were peeked or a
certain number of pointers were processed.

A Manager thread (i) performs a transaction to obtain lease on
the pointer. By taking a lease, it effectively reserves the entire queue
zone rather than individual queued items, (ii) batch-dequeue up to
𝑑𝑒𝑞𝑢𝑒𝑢𝑒_𝑚𝑎𝑥 items (the total transaction size must also stay within
certain bounds imposed by FoundationDB) and passes each item
separately to the Workers pool, and finally (iii) decides whether
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Algorithm 1: QuiCK’s Scanner algorithm.
Input: 𝐶𝐼𝐷𝑆 - a list of FoundationDB cluster IDs
parameter :𝑝𝑒𝑒𝑘_𝑚𝑎𝑥 - max number of pointers to peek
parameter :𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛_𝑓 𝑟𝑎𝑐 - fraction of peeked pointers to

process
parameter :𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛_𝑚𝑎𝑥 - max peeked pointers to

process
parameter :𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔_𝑏𝑜𝑢𝑛𝑑 - max pointers to process

1 shuffle(𝐶𝐼𝐷𝑆 )
2 for 𝑐 ∈ 𝐶𝐼𝐷𝑆 do
3 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 ← 0

4 while 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 < 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔_𝑏𝑜𝑢𝑛𝑑 do
5 wait until at least one worker has no task to process
6 𝑝𝑒𝑒𝑘𝑒𝑑_𝑙𝑖𝑠𝑡 ← peek(𝑝𝑒𝑒𝑘_𝑚𝑎𝑥 )
7 remove from 𝑝𝑒𝑒𝑘𝑒𝑑_𝑙𝑖𝑠𝑡 pointers already being

processed by this consumer’s Managers
8 𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝑠 ← select min(𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛_𝑚𝑎𝑥,

⌈size(𝑝𝑒𝑒𝑘𝑒𝑑_𝑙𝑖𝑠𝑡) ∗ 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛_𝑓 𝑟𝑎𝑐⌉) pointers
from 𝑝𝑒𝑒𝑘𝑒𝑑_𝑙𝑖𝑠𝑡 , uniformly at random

9 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 ← 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 + size(𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝑠)
10 Pass 𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝑠 to Managers pool, each running Alg. 2
11 end
12 end
13 go to 1

to delete the pointer, requeue it, or do nothing. In step (ii), recall
that dequeueing an item implies taking a lease. We enforce a per-
consumer limit on the number of work items of each type that can
be processed concurrently; for throttled items, we may release the
lease, or simply let it expire. If the pointer is requeued in step (iii),
its new vesting time depends on whether or not items were found
in the queue, and the earliest vesting time of any such item. For
example, if the earliest vesting time of any item in the queue is 10

seconds from now, the vesting delay is set to 10 seconds. If a new
item is enqueued that needs to be processed earlier, the pointer’s
vesting time is changed during enqueue to make it available sooner.

A Worker receives a leased item, double-checks that it is still
leased, and starts processing it. In parallel, another thread peri-
odically attempts to extend the lease, as long as the item is being
processed; if this fails, processing is interrupted. Execution time is
bounded, to mitigate faulty work items. If processing successfully
completes, the Worker deletes the item. If an error occurs during
work item processing, the Worker may retry immediately, and, if
still unsuccessful, requeue to update the queued item’s error count
and vesting time using an exponential backoff algorithm (based on
the error count). The same retry logic is used by Managers when
dealing with pointer errors. We classify errors into transient (e.g.,
contention or trouble reaching the database or other sub-systems)
and permanent (e.g., the user was deleted), and do not retry on
permanent errors. In such cases, the item or pointer is deleted
immediately. Finally, each type of queued items (i.e., a job type)
can set its own retry policy, for example how many in-line retries
to perform, whether to continue retrying indefinitely (this would
eventually cause alerts and manual mitigation) or to discard the job
after a certain period of time.

Concurrency between consumers, fairness and leases. Ideally, point-
ers appearing earlier in the top-level queue should be processed
first, since they correspond to queues that weren’t accessed by con-
sumers for a longer time. Processing work items sequentially, how-
ever, would cause all consumers to contend on the same pointers.
Hence, the choice in step (b) is done at random by most Scanners,
which aims to improve concurrency and reduce contention. Specif-
ically, Scanners select their pointers randomly out of a larger set
of pointer ids (lines 6 and 8, Algorithm 1). By doing so, however,
we might starve pointers that appear earlier in 𝑄𝐶 , or, at the very
least, increase the tail latency of processing their work items. To
address this problem, we occasionally select one Scanner to process



pointers in-order rather than randomly. This guarantees better tail-
latency and no starvation. This consumer is selected dynamically
(separately for each top-level queue 𝑄𝐶 ), by taking a lease on a
shared memory object (using memecached). In cross-datacenter
deployments, only consumers in one of the datacenters attempt to
take this lease (details are beyond the scope of this paper).

As an optimization, the peek on line 6 in Algorithm 1 only scans
entries of the vesting time index, to get the pointer record ids, while
Manager threads access the actual pointer records when needed.
Scanning the index especially benefits randomized consumers since
they select only a small fraction of the pointers for processing.

With pointer leases, consumers contend on queues rather than
on individual work items. Usually, pointer leases are short (on the
order of 1 second), which is sufficient to read work items from
the database and pass them to Workers. A lease effectively moves
the pointer to the end of the top-level queue, after other vested
pointers. This allows other queue zones to be found by Scanners
before the same queue is picked up again (of course, randomized
pointer selection in step (b) means that this isn’t a strict guarantee).
Pointer leases, together with the upper-bound on the number of
items to consume from each queue (𝑑𝑒𝑞𝑢𝑒𝑢𝑒_𝑚𝑎𝑥 ), ensure that we
don’t starve smaller queues by spending too much resources on
larger queues and guarantee fairness across different queue zones
(and effectively, across users and apps). Work item leases, on the
other hand, minimize duplicate processing by temporarily “hiding”
work items already being processed, and increase concurrency by
allowing other Managers to dequeue additional work items from
the same queue. Dynamically extending the leases allows Workers
to hold a lease for the duration of processing, without predicting the
run-time in advance. If a Worker fails, a short lease duration allows
Managers to promptly find and pass the item to other Workers.

Algorithm 2:Manager thread: pointer processing.
Input: 𝑝 - a pointer to QDB
Input: 𝑐 - a cluster ID, such that 𝑝 is stored in Qc
parameter :𝑑𝑒𝑞𝑢𝑒𝑢𝑒_𝑚𝑎𝑥 - max allowed items to dequeue
parameter :𝑝_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 - pointer lease duration
parameter :𝑚𝑖𝑛_𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒 - min time a queue remains

empty before its pointer is deleted
1 if not 𝑖𝑑 ← obtain_lease(𝑝, 𝑝_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛) then
2 return CONFLICT

3 is_active← not is_empty(QDB)
4 𝑝𝑡 ← 𝑝’s last active time
5 items← dequeue(𝑑𝑒𝑞𝑢𝑒𝑢𝑒_𝑚𝑎𝑥 ) from QDB
6 Pass items to Workers pool, each running Alg.3
7 min_vesting_time = read minimum vesting time in QDB //

negative if QDB is empty
8 if 0 ≤ min_vesting_time or is_active then
9 vesting_delay = MAX(0, min_vesting_time - now)

10 requeue(𝑝 , 𝑣𝑒𝑠𝑡𝑖𝑛𝑔_𝑑𝑒𝑙𝑎𝑦) // also update 𝑝’s last active
time

11 else if now − 𝑝𝑡 ≥ 𝑚𝑖𝑛_𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒 then
12 complete(𝑝 , 𝑖𝑑) in Q𝑐
13 return SUCCESS

Algorithm 3:Worker thread: work item processing.
Input: item - a leased work item of type 𝑡 in QDB
Input: 𝑖𝑑 - a uuid of the lease on𝑤
parameter :𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_𝑏𝑜𝑢𝑛𝑑𝑡 - max allowed execution

time for work item of type 𝑡
1 do in parallel
2 process item (bounded by 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_𝑏𝑜𝑢𝑛𝑑𝑡 )
3 if failed to process item then
4 𝑛𝑒𝑤_𝑑𝑒𝑙𝑎𝑦← calculate with exponential back-off,

based on number of failures
5 requeue(item, 𝑣𝑒𝑠𝑡𝑖𝑛𝑔_𝑑𝑒𝑙𝑎𝑦 = 𝑛𝑒𝑤_𝑑𝑒𝑙𝑎𝑦) in QDB
6 else
7 complete(item) in QDB
8 end
9 end

10 do in parallel
11 Periodically extend_lease(item) in QDB
12 end

Reducing contention between producers and consumers. QuiCK
was designed to avoid unnecessary contention between clients en-
queueing work items, and consumers processing them. From the
algorithm above, it is easy to see that the pointers in QC are the only
potential point of contention: enqueueing clients might read the
relevant pointer record to determine whether one exists or needs to
be created, while consumers update pointers when taking a lease,
requeueing or deleting them. FoundationDB’s optimistic concur-
rency control makes sure that if the pointer is updated or deleted
after the enqueueing transaction’s read but before its commit, the
enqueueing transaction will abort. Such aborts are very undesirable
since they might fail client requests. To avoid potential contention
due to updates to the pointer record, enqueueing an item is divided
into two parts. The first, which may be performed transactionally
with the client request, doesn’t actually involve reading the pointer.
Instead, we maintain a Record Layer secondary index that maps
each logical database identifier to a top-level queue pointer in QC,
if one exist. This index is updated only on pointer creations or
deletions, but never on updates. Hence, the only possible point of
contention can happen when a pointer is deleted by a consumer.

The second part of an enqueue is a separate transaction, which
reads the pointer record and updates its vesting time in case the
existing vesting time is too far in the future and would therefore
introduce a significant delay for the newwork item. This transaction
is an optimization and cannot fail a client’s request.

Pointer garbage-collection. Each pointer to an empty queue stores
the last active time we’ve observed work items in the corresponding
queue zone.We delete the pointer only if a sufficient amount of time
has passed since it was “active”. This allows us to avoid repeatedly
creating and deleting the same pointer by having a grace period in
which the queue could be empty and work items could be enqueued
cheaply without the need to create the pointer anew, which could
potentially cause contention with consumers as mentioned above.
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Figure 3: Client’s enqueue and Consumer’s complete operations.

Correctness. The key to correctness (i.e., at-least once semantics)
is making sure that once a work item has been successfully en-
queued, consumers can find and execute it. A consumer can miss
the work item only if we delete a pointer to a non-empty queue,
or if a vested pointer is never selected. The latter is prevented by
having one of the consumers process QC sequentially. Whenever
the enqueue operation requires creating a pointer, this update con-
flicts with any potential delete (or other creates) causing one of the
transactions to abort (both transactions read and update the same
key in the pointer index). If, however, the pointer already exists,
the conflict is achieved in two ways: (1) the process enqueueing
the work item reads an index entry corresponding to the queue
zone’s pointer in QC (see above), while any deletion of the pointer
transactionally updates the index. Therefore, if the deletion com-
mits before the enqueue, the enqueuing transaction will fail. (2) the
consumer scans the key-space of the queue zone to determine that
it’s empty before deciding to delete the pointer (the scan and dele-
tion are done in the same transaction), thus if the enqueue commits
before the delete, successfully inserting a record into the queue
zone key-space, the delete transaction will fail. Finally, we note that
when the side-effects of processing a work item are confined to
the same FoundationDB cluster, processing and deleting the work
item in the same transaction can guarantee that the work item isn’t
processed multiple times, achieving exactly-once semantics.

Isolation level. FoundationDB’s strict serializability semantics
are essential for QuiCK’s correctness. For example, a consumer
must observe recent work items written by users into queue zones,
and similarly, when a pointer is deleted by a consumer, a user
must detect that and re-create the pointer. As an example, snapshot
isolation semantics wouldn’t be sufficient to guarantee that any
non-empty queue zone has a pointer in 𝑄𝐶 (an invariant main-
tained by QuiCK) – a user’s enqueue operation and the consumer’s

garbage-collection of pointers write to different locations in the
database and would not conflict under snapshot isolation. At the
same time, QuiCK relaxes the semantics when observing latest
writes isn’t important. In particular, using cached read versions
reduces transaction latency, at the cost of potentially returning
stale values (at serializable isolation) for read-only transactions,
and potentially increasing the rate of aborts for read-write transac-
tions (which are still strictly serializable). The “causal read risky”
FoundationDB flag has a very similar effect. We use both methods
to reduce transaction latency for peeks, obtain lease operations, and
when reading the count of work items or pointers (for monitoring).
Note that these aren’t used when enqueueing work items since
we do not wish to increase aborts for user-facing operations and
neither for requeue transactions, which are used to record errors.

User-move and local work items. When a logical database (e.g.,
a user’s data) is moved to a different FoundationDB cluster, the
pointer index is queried to determine whether a pointer exists to
this database. If so, this pointer is copied to the destination. This is
done after copying the data, so that the pointer isn’t prematurely
deleted by consumers at the destination. Note that some work items
do not have an associated user or an associated logical database,
for example, asynchronous re-indexing jobs related to many users.
Such work items are usually fanned out and executed on all Foun-
dationDB clusters in our system, or, alternatively are specific to
a particular cluster. We call such work items local since (unlike
other queued items) they never have to be moved to a different
FoundationDB cluster, and enqueue them directly into the top-level
queue, along-side pointers to queue zones.

6.1 Supporting External Data Stores
This section describes QuiCK’s support for data that isn’t stored
in FoundationDB. In such case, co-locating data and work items



is still important to meet the requirements outlined in Section 2.
Re-implementing QuiCK’s scheduling in the different data-stores,
however, is often complex and/or not possible since their semantics
are usually much weaker than those provided by FoundationDB (for
example, Cassandra does not provide transactions across its entire
key-space and does not natively support secondary indexes). Hence,
𝑄𝐶 and the pointer index remain in FoundationDB, while the data
and work items (everything below 𝑄𝐶 in Figure 2) are now stored
in a different data-store. Since in such cases work items are not
stored in FoundationDB, we lack transactionality between pointers
and work items. We next describe how the algorithm described
above is modified to guarantee at-least once semantics in this case,
i.e., that work items can always be found by consumers.

A consumer’s algorithm remains similar. Just like before, it ob-
tains a lease on a pointer, checks whether there are any work items
(this time in the external data-store), if not it deletes the pointer, and
otherwise processes and deletes work items, moves on to the next
pointer, and so on. Whether or not leases can be taken on individual
work items, depends on the external store. If not, a longer lease on
the pointer (in FDB) can be used. Note that the above-mentioned
external data-store read must be a "strong read", namely guaran-
teed to observe any successfully written work items (that weren’t
deleted) or else the pointer might be prematurely deleted.

The enqueue operation is now slightly different. First, it stores
the work item in the external data-store. Then, an FDB transaction
is created, reads the pointer index in FoundationDB’s ClusterDB
and, if the pointer doesn’t exist, creates it and commits the FDB
transaction. The main complexity arises when the pointer exists. In
this case, the FoundationDB transaction becomes read-only, since
the work item itself is not written in the same transaction (it is
stored in an external data-store). In this case, the correctness argu-
ment from the previous section no longer holds, since committing
a read-only transactions in FDB doesn’t cause any conflicts to be
checked. One alternative to resolve this could be to always update
the pointer, even if it exists. This would generate unnecessary data-
base writes and cause significant contention between producers
and consumers on the pointer record. Fortunately, FoundationDB
provides an API that allows us to avoid the unnecessary pointer
updates – the enqueue operation declares a write conflict on the
pointer’s key in the index. This causes the transaction’s conflicts to
be checked at commit time, just like with a real read-write transac-
tion. Since the write conflict is declared on the index and not on
the pointer itself, an enqueue operation happening concurrently
with a consumer obtaining a lease on the pointer would not cause
a conflict. If the enqueue happens concurrently with a consumer’s
attempt to delete the pointer, and the enqueue commits earlier, the
delete transaction will abort since it reads the pointer key in the
index, on which the write conflict was declared.

Enqueuing the pointer in FoundationDB is done after writing
the work item in an external data-store, and it’s possible that the
transaction writing the pointer aborts. In this case, enqueue at-
tempts to garbage-collect the written work item. In the worst case
(if garbage-collection fails), some work items might remain in the
external data-store. Note, however, that in this case the client’s en-
queue operation fails. If the pointer is later re-created, it is possible
that such old work items are resurrected and executed. Our current
use-cases are idempotent and aren’t sensitive to executing work

items more than once, although executing work items when the
client request fails might in some cases result in unnecessary work.
Double execution could be further prevented by the work item
processing logic (e.g., by creating a unique record whose existence
would prevent redundant execution). To some extent, these issues
currently exist even if the work items are stored in FoundationDB
– a CloudKit server failure occurring after the enqueue commits
could cause the client’s request to fail, retried, and result in double
execution. Ongoing work in the FoundationDB project is aiming to
address this issue [11].

7 RELATEDWORK
Early research on task execution in Grid Computing, the prede-
cessor of Cloud, focused on process-centric models where jobs
are submitted and managed [20, 21]. Research later evolved to
data-centric models that use relational DML to submit and manage
jobs, SQL for querying and analyzing job results and so on [22].
While Workflow Management systems (WMFS) use a variety of
datastores, the benefits of RDBMS integration for WFMS is widely
recognized [24, 27, 28], particularly transactionality, SQL support,
concurrency control, scalability, durability and administrative ease.
Extract-transform-load (ETL) workflows are supported by many
database vendors. Even early NoSQL workflow systems relied on a
relational database under the hood [8].

Queueing systems similarly use a variety of storage engines. For
example, Apache Pulsar uses Apache BookKeeper and supports
tiered storage. Kafka and RabbitMQ store messages in log files.
Many queueing systems support pluggable connectors, through
which queued messages can be exported to structured and unstruc-
tured storage systems. For example, RabbitMQ supports both rela-
tional (e.g., PostgreSQL) and time-series (e.g,. InfluxDB) databases.
Database systems can also generate queued messages. For exam-
ple, Slony [17] uses PostgreSQL’s trigger functions to send event
messages, implementing primary-backup replication and a Post-
greSQL extension, pg_amqp [16], that exposed AMQP publishing
via PostgreSQL functions.

Oracle Database 9i introduced fully integrated queues [12], and
more recently added support for partitioned queues in 12c [14].
Oracle Database 20c added Kafka support [1], allowing Kafka pro-
ducers and consumers to use the database instead of a Kafka broker.
Queues are automatically partitioned into database instances, and
consumers are assigned an instance to dequeue from. QuiCK parti-
tions queues on two levels – first, according to the CloudKit tenancy
model, at a granularity as fine as a queue for each user of an app,
and second, across many FoundationDB clusters. Hence, the num-
ber of queues managed by QuiCK is many orders of magnitude
larger. Unlike in Oracle, consumers can dequeue from multiple clus-
ters, and within a cluster do not contend on individual messages in
queues but instead take a coarser lease on an entire queue.

Integrating queues within an ACID DBMS allows leveraging
its high-availability, DML, transactionality with other stored data,
observability, monitoring and other existing tooling, as well as
to reduce dependencies on any external queuing system. Perhaps
the most salient aspect of QuiCK is its support for CloudKit’s ten-
ancy model. CloudKit’s scale, security, and generality hang on the
assumption of isolation of every user’s application data as an in-
dependent database. QuiCK adopts CloudKit’s model to allocate



resources among tenants in a fair manner, provide per-tenant mon-
itoring of queued items, and support tenant queue migration across
clusters using its native tooling.

In Dropbox’s ATF [2], like in QuiCK, deferred tasks are enqueued
into a database, together with other user data. A service asyn-
chronously pulls from the database and enqueues available tasks
to Amazon Simple Queue Service [7] (SQS) queues partitioned by
topic and priority. Pools of consumers, each allocated for a partic-
ular topic, pull tasks from SQS, take a lease on each task in the
database, execute the task, and finally remove it from the database.
SQS serves as a buffer between the database and workers. ATF uses
both SQS and detailed status information maintained per task in
the database to coordinate task execution. QuiCK does not depend
on an external queuing service; workers pull directly from the data-
base. Just like ATF, QuiCK maintains indexes that allow workers to
find work items, but these are coarse-grained and hence more space
efficient and less likely to become a hot-spot. ATF is indifferent
to CloudKit’s user-centric tenancy model, and focuses entirely on
topic independence; fairness is based on strict priorities. QuiCK
schedules execution to provide fair service to all CloudKit users.
ATF is a service allowing client teams to provision a pool of con-
sumers for a particular topic. We can approximate this by creating
a top-level queue per app, such that a pool of consumers could be
created to work exclusively on the queues of the app’s users. In
QuiCK, the allocation of Workers to items is dynamic – a shared
pool of Workers handle all topics, and per-topic throttling bounds
the number of work items of any topic processed concurrently, i.e.,
the resources dedicated to the topic.

Similar to Amazon SQS [7] and Azure Storage Queues [13],
CloudKit Queue Zones, described in Section 5, support delayed
message delivery and do not guarantee strict FIFO semantics. All
three systems rely on delayed messages to implement leases. Finally,
just like Queue Zones and QuiCK, these systems do not support
push-based APIs. Unlike QuiCK, however, these systems do not
support transactional operations; for example, with a Queue Zone,
it’s possible to enqueue multiple messages as an atomic batch, or
to execute multiple API calls transactionally, such as to dequeue,
execute, and delete a work item all within the same transaction.
Apache Kafka supports transactions, but does not support delayed
messages or leases. The latter, together with a static assignment of
consumers to Kafka partitions, allows Kafka to guarantee FIFO mes-
sage delivery. Oracle queues provide the most comprehensive set of
features, including transactions, message locking (for the duration
of a dequeue transaction), delayed messages, push notifications and
configurable ordering (including FIFO) [15].

8 EVALUATION
In this section we evaluate QuiCK’s performance. We focus on
demonstrating its scalability, latency, fairness model and its han-
dling of potential contention with multiple consumers.

Environment and Workload Generation. We evaluated QuiCK
in a test cluster – a CloudKit partition [25] mimicking our pro-
duction environment. In this setting, CloudKit was using a single
FoundationDB cluster (version 6.3.10) in a highly-available config-
uration with 2 datacenters (∼13ms median round-trip-time apart),
each with its own “satelite” location (∼5ms apart) used for hosting
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Figure 4: Saturation throughput.

FoundationDB’s write-ahead logs. Commits are coordinated from
a primary datacetner, applied synchronously to log replicas in the
primary datacenter and satelite, and propagated asynchronous to
the remote datacenter [3]. We used the latest FoundationDB Record
Layer version (2.10.156.0).

QuiCK was executed on 1 to 16 servers, each with 128 system
queue manager threads and 128 worker threads. Client load was
generated by a separate pool of servers, according to a uniform or a
skewed load distribution, simulating load from 150K distinct clients
and one CloudKit app (corresponding to 150K queues in QuiCK).
For uniform load, each client performed 1 enqueue operation every
minute, each with 1 to 4 work items. Each work item simulated
asynchronous workload of ∼50ms. Skewed load was generated
following Pareto distribution (with 𝛼 = log4 (5)) to determine each
client’s enqueue frequency. In all experiments 𝑝𝑒𝑒𝑘_𝑚𝑎𝑥 was set
to 20K, and 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛_𝑚𝑎𝑥 to 2K. Unless mentioned otherwise, we
used 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛_𝑓 𝑟𝑎𝑐 = 0.02. In addition, we set 𝑑𝑒𝑞𝑢𝑒𝑢𝑒_𝑚𝑎𝑥 to be
equal to the number of tasks per enqueue.

Scalability. CloudKit uses hundreds of FoundationDB clusters.
Since these clusters are independent, in this evaluation we’ve fo-
cused on QuiCK’s performance with one cluster and a correspond-
ing top-level queue. Figure 4 shows QuiCK’s throughput at sat-
uration. To reach saturation, we’ve gradually increased load by
adding 100 new clients every second. We can see that maximum
throughput scales linearly with the number of consumers (until hit-
ting a network thread bottleneck [10]). As mentioned in Section 6,
Managers take a pointer lease, dequeue up to 𝑑𝑒𝑞𝑢𝑒𝑢𝑒_𝑚𝑎𝑥 vested
work items in the zone and pass them to Workers. Throughput
is hence considerably higher when multiple work items exist in
the zone, since the cost of the pointer lease (and possible pointer
deletion/update) is amortized.

Fairness. Figures 5 and 6 depict two test executions, one with
uniform load and the other with skewed load, with a single con-
sumer. In this case, we set 𝑑𝑒𝑞𝑢𝑒𝑢𝑒_𝑚𝑎𝑥 to 1, meaning that 1 item
was processed per queue visit, and since there is no need to avoid
contention, the consumer was processing pointers sequentially.
Specifically, we show (a) the time from a pointer becoming avail-
able (vested) till QuiCK starts processing the queue, and (b) the time
from enqueuing of a work item till it is picked for processing by
QuiCK. In Figure 5 (uniform load), both median and tail latencies
are relatively low, and the time to start processing queued work
items is equal to the time to pick up a pointer plus dequeuing a work
item and passing it to a Worker, confirming that QuiCK gets to all
queues within a short period of time and processes the same num-
ber of work items in each queue. On the other hand, with skewed



load, queue lengths ranged between 1 and 60 work items per queue.
In Figure 6, we can see that even though all queues were picked
up relatively quickly for processing (median ∼105ms, 99.9% latency
of ∼305ms), and work item median latency was low (∼193ms), tail
latency for work items is much higher (∼8.2 seconds). The reason
is QuiCK’s “water filling” strategy of spreading processing cycles
among all queues, i.e., spending bounded time on each queue and
returning to longer queues again later, rather than processing each
queue to completion.
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Contention. Figures 7 shows the effect of 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛_𝑓 𝑟𝑎𝑐 in Al-
gorithm 1 on latency (top), contention (middle), and maximum
throughput (bottom). In this experiment, client load was gener-
ated uniformly, with 1 item enqueued at a time, and 4 consumers
were performing random selection of pointers, with 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛_𝑓 𝑟𝑎𝑐
varied from 0.001 to 0.5. We can see that a smaller fraction re-
sults in less contention (since the chance of collision between
consumers is lower), e.g., 0.31% of all attempts to obtain lease
for 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛_𝑓 𝑟𝑎𝑐 = 0.001, but extreme median and tail latency
(since it takes longer for a pointer to be chosen for processing).
As we increase 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛_𝑓 𝑟𝑎𝑐 , failures to obtain lease go up until
𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛_𝑚𝑎𝑥 kicks in, limiting the number of chosen pointers,
hence the flatter curve in the 0.1 to 0.5 range of 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛_𝑓 𝑟𝑎𝑐 . An
extremely low 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛_𝑓 𝑟𝑎𝑐 results in low maximum throughput,
but with 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛_𝑓 𝑟𝑎𝑐 of 0.005 and above we can see a relatively
stable maximum throughput.

As the Scanner only reads the pointer index rather than the
records themselves, it does not know whether pointers are leased.
A Manager then tries to obtain a lease (Algorithm 2) by (a) reading
the pointer record, and (b) performing a conditional update, writing
a randomly chosen lease 𝑢𝑢𝑖𝑑 (Section 5). If another consumer con-
currently obtains the lease, a failure can happen in either step. A
failure in step (a) is much cheaper, since its cost is a redundant read
to FoundationDB, while a failure in (b) is generated during commit
and results in extra load on FoundationDB’s transaction manage-
ment (namely, Resolver servers, enforcing strict-serializability with
optimistic concurrency control). In our experiments, we saw that
up until 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛_𝑓 𝑟𝑎𝑐 = 0.2, about 50% to 60% of all failures
happen in step (b) and the rest in step (a). At 0.5, about 90% of all

failures happen in step (a). In this case, most pointers passed to
Managers are already leased, which is detected when a Manager
reads the pointer in step (a). As the total percent of failures increases
from 44% at 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛_𝑓 𝑟𝑎𝑐 = 0.2 to 64% at 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛_𝑓 𝑟𝑎𝑐 = 0.5,
latency increases accordingly.
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Figure 7: The affect of 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛_𝑓 𝑟𝑎𝑐 on (a) median and tail
latency (in milliseconds), (b) failures to obtain lease (as % of
all attempts) and (c) maximum throughput.

9 CONCLUSIONS
When queues are needed to store information and tasks related to
other data persisted in a database, leveraging the same database
for queuing has many advantages. It can make the management of
queued items simpler and their execution semantics w.r.t. stored
data easier to reason about. Using the same database reduces the
dependency of the system on external services, improves observ-
ability, and reduces operational complexity and overhead.

In this paper, we presented QuiCK, a queuing system built for
managing CloudKit’s asynchronous tasks. QuiCK stores tasks along-
side data in CloudKit and fully supports its tenancy model. We
demonstrated how QuiCK uses various features of FoundationDB
and the FoundationDB Record Layer. Finally, we showed that QuiCK
scales linearly with consumer resources, processes tasks with low
latency and allocates resources fairly across CloudKit tenants.
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